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Abstract

A Finite-Volume discretisation of the Navier-Stokes equations is used to study various

aspects of the physics and ecology of the the riverine thermal bar. The classical thermal

bar is a downwelling plume which is formed twice a year in temperate lakes when the

shallows warm or cool through the temperature of maximum density (Tmd). The riverine

thermal bar is a similar sinking plume arising at the confluence of river and lake waters

which are on either side of the Tmd. The dynamics of this poorly understood riverine

case may be considerably more complex due to the additional effects of river salinity

and velocity on the downwelling plume.

A series of deep-lake simulations forms the initial study of the riverine thermal bar

in the Selenga River delta in Lake Baikal, Siberia. While the decrease in the Tmd with

depth (pressure) prevents the classical thermal bar from sinking far, this study shows

that a saline riverine thermal bar may be able to sink to greater depths and thus take

part in Baikal’s vigorous deep-water renewal.

Attention then focusses on a model of the smaller Kamloops Lake in British Columbia,

which is used to reproduce the only field observations of a riverine thermal bar and test

the effects of coriolis forces, bathymetry, and surface heating on the resulting flow field.

Plankton ecosystem models are then coupled to these validated dynamics, and results

are presented which extend and test the findings of a previous modelling study on the

effects of the classical thermal bar on plankton populations.

Keywords: cabbeling, lake dynamics, mathematical model, plankton, river, thermal bar
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Chapter 1

Introduction

The constant decrease in the cost of computer power has transformed many areas of

science and generated several new fields of study which are disciplines in their own

right. One of the sciences which has been directly affected is the classical study of

fluid mechanics, which is rich in problems involving the partial differential equations

and nonlinearity which prove so challenging to traditional mathematical analysis. The

inception of Computational Fluid Dynamics (CFD) as a mainstream research tool has

radically broadened the scope of the modern study of fluid phenomena.

The versatility of CFD means that, unlike classical fluid mechanics which tends to

address simplified general problems, it may be successfully applied to complex individual

engineering applications such as turbomachinery, missile and aircraft design. Large-scale

environmental flows may also be addressed, allowing the development of many sizeable

operational atmosphere and ocean models which are dedicated solely to predicting the

general circulations and climatological conditions of the Earth.

While these General Circulation Models are still under active development due to the

need for ever-improving predictions and fears over our changing climate, progressively

more powerful computers have precipitated an important increase in the modelling of the

relatively small-scale phenomena which produce and interact with these large motions.

This includes a vast increase in the use of desktop machines rather than supercomputers

to perform CFD modelling of environmental flows in smaller domains, such as lakes,

rivers, urban air spaces, etc.
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A relatively small and important mechanism which is extremely well suited to CFD

modelling is the thermal bar. The essential nonlinearity in the equation of state makes

mathematical analysis of the thermal bar problematic, particularly when haline effects

are involved, while laboratory experiments cannot achieve the high-Reynolds-number

regime present in nature and flows are generally too slow and widespread to be measured

accurately in the field. The classical thermal bar has been the subject of sophisticated

CFD treatment by many authors (see section 1.3), but to my knowledge the riverine

thermal bar has never previously been modelled in any way. In this thesis, the limited

computational resources available to this study are applied to a numerical model of the

riverine thermal bar.

1.1 The Thermal Bar

Fresh water is unusual in that it has a nonlinear dependance of density on temperature

over the full limnological range of temperature, pressure, and salinity. Figure 1.1 shows

the nonlinear form of the equation of state given by Chen & Millero (1986) (displayed

at atmospheric pressure), and the increase in density due to salinity. This nonlinearity

leads to the cabbeling instability, which in turn causes the thermal bar phenomenon, as

described below.

At atmospheric pressure and zero salinity, thermal increases after ice melt (in the

range 0◦ − 3.98◦C) result in increased molecular agitation which causes the hydrogen

bonding of H2O to rupture, filling the voids in the ice lattice structure (Wetzel 1983).

This causes an increase in density with temperature. As the temperature progresses

above 3.98◦C the amplitude of the inter-molecular vibrations increases, and so do the

inter-atomic distances, increasing the volume of the water and thus decreasing the den-

sity (Wetzel 1983). It is the interaction of these processes which causes the nonlinear

form of the equation of state. The temperature at which these two effects combine to

give the minimum specific volume for water (and therefore the maximum density) is

called the temperature of maximum density (Tmd).

These processes are affected by salinity and pressure, so that the Tmd varies spatially

within lakes. Figure 1.2 shows the effect of salinity and pressure on the Tmd; note that
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the pressures found in deep lakes have a particularly drastic effect. This influence of

pressure on the thermal expansion of water, termed thermobaricity, results in a decrease

in the Tmd of roughly 1◦C per 500 m depth (Eklund 1963).
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Figure 1.1: The equation of state at atmospheric pressure over the range of
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When water masses with temperatures on either side of the Tmd meet, the mixed

water at the interface will be closer to the Tmd, and thus denser, than either of the

component bodies. Density increase upon isobaric mixing of two dissimilar water types

is generally referred to as cabbeling (Witte 1902, Foster 1972). In lakes, this area of

maximally dense, cabbeling water forms a descending plume which draws in surrounding

waters, causing a sharp thermal front about the surface signature of the T = Tmd

contour. Such a front was first observed by Forel (1880) in Lake Geneva, who called

it the barre thermique (thermal bar) as it forms a barrier between waters warmer and

cooler than the Tmd. The first measurements showing the existence of a thermal bar

were made in Lake Ladoga by Tikhomirov (1963).

Previous analytical and numerical studies of the thermal bar have mainly been lim-

ited to the ‘classical’ case where a surface heat flux causes differential warming of the

lake water due to bottom topography, e.g. Shimaraev et al. (1993), Malm (1995), and

Farrow (1995b). For example, moderately-sloping shallow regions near the shores of

a lake will warm faster than the deeper centre in spring due to their smaller volume

and additional radiation absorbtion by the lake bed (St.John et al. 1976). If the initial

temperature of the lake was cooler than the local Tmd then eventually the shallow region

will be warmer than the Tmd and the deep region cooler. A thermal bar will then form

between these waters as the mixture is at the local Tmd and thus denser than either of

the two component bodies (see figure 1.3).

As the whole lake gradually warms, the thermal bar propagates out into the lake

until the surface temperature is above the Tmd everywhere. The lake then becomes

stably stratified as warmer water overlies cooler dense water (Zilitinkevich et al. 1992).

As the air cools in the autumn the reverse of this process occurs, with the shallow areas

cooling through the Tmd more quickly than the deep waters. In this way all temperate

lakes have a twice-yearly ventilation of lower waters from these downwelling episodes.

However, the autumnal thermal bar is less well-defined due to the generally stronger

wind-mixing and weaker temperature gradients present at that time of year (Ullman et

al. 1998).

Under a geostrophic balance, the converging pressure gradients on either side of
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the surface Tmd will generate ‘thermal wind’ flows in the alongshore direction, parallel

to the thermal front. These flows consist of a strong cyclonic circulation inshore of

the thermal bar (as a result of the relatively steep temperature gradients there) and

a weaker anticyclonic circulation offshore. The thermal bar therefore acts as a barrier

between parallel horizontal flows in exactly opposing directions. As an illustration of this

circulation, if the section of figure 1.3 were in the northern hemisphere then horizontal

flows would be directed ‘out of the page’ inshore of the thermal bar and ‘into the page’

offshore, with a surface stagnation point in between.

T >Tmd

T=Tmd

T < Tmd

Figure 1.3: Schematic of the ‘classical’ spring thermal bar driven by a surface

heat input. The internal arrowed lines are streamlines.

Water within the thermal bar plume sinks until it reaches a depth where it is no

longer denser than the surrounding fluid. This may happen for several reasons, such as

entrainment of lower density water into the plume or varying thermal characteristics of

the surrounding water. Importantly, the decrease of the Tmd with depth (pressure) may

also suppress the downwelling motion of the thermal bar (Carmack & Weiss 1991). If

the subsurface temperature profile decreases slowly with depth, as is usually the case in

deep temperate lakes, then any water sinking at the surface Tmd will no longer be densest

at great depths, where slightly colder (and thus denser) water will form a barrier to free

convection (figure 1.4). This provides a theoretical maximum penetration depth for the

thermal bar phenomenon, so that the plume will only reach the bottom of the lake if it

is shallow enough for the decrease in Tmd to be negligible. It is therefore believed that
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some external mechanism is required to trigger convection to the bed of the deepest

lakes (Farmer & Carmack 1981).

   0

 200
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Figure 1.4: A typical temperature profile from the South Basin of Lake

Baikal. Water sinking at the surface Tmd is less dense than the

waters below and will therefore be unable to descend past a cer-

tain depth.

1.2 Riverine Effects

The riverine thermal bar is formed at the mouth of a river where the temperatures of the

river and lake are on opposite sides of the Tmd (Carmack 1979). In theory this produces

a downwelling plume of a similar form to the classical thermal bar, but the river’s

characteristics other than temperature will complicate the buoyancy forces governing

the thermal bar circulation (Holland et al. 2001).

As a river-lake system is warmed in spring, the river will heat up faster than the

lake because the heat influx acts upon a shallower, well-mixed volume and extra radiant

energy is absorbed by the river bed (St.John et al. 1976). In temperate regions both

river and lake are cooler than the Tmd over the winter, so the warmed river is densest

and therefore enters the lake as a sinking gravity current which flows towards the lake

bed (Carmack et al. 1979). As the warming continues the river’s temperature passes

through the Tmd before the lake, and a thermal bar plume will form (figure 1.5). In a

similar manner to the classical case, this plume moves away from the inflow as warmer
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and warmer water is fed into the lake by the river. Eventually the whole lake is warmed

to above the Tmd and the buoyant river enters as a surface overflow on the denser,

stratified lake water (Carmack et al. 1979).

In autumn the analogous case happens with a surface cooling, as the river generally

responds to external forcing more quickly than the lake. In this way the twice-yearly

mixing of temperate lakes can be dominated by riverine effects rather than differential

heating of the shallow and deep areas, so that even a steep-sided lake can be ventilated

by thermal bars (Carmack 1979).

The main difference between the classical and riverine thermal bars is caused by the

influx of salinity from the river. Throughout this study the term ‘salinity’ is taken to

mean total milligrams of dissolved solids per kilogram of saline water. The introduction

of saline effects on density provides a contrast between the unusual buoyancy forcing of

the pure thermal bar and the straightforward sinking associated with salinity gradients,

revealing the differing influences of near-linear and nonlinear components of the equation

of state. Also the effects of a river inflow velocity on the propagation of the thermal

bar may be apparent as a high velocity will increase advection of heat into the lake and

potentially cause a warming rate which is not possible in the classical scenario.

T >Tmd

T=Tmd

T < Tmd

Figure 1.5: Schematic of the spring riverine thermal bar.

Elucidating the differences between the classical and riverine thermal bars is the aim
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of this study. Of particular interest is the question of whether a saline riverine thermal

bar may overcome the ‘thermobaric barrier’ to sinking and therefore penetrate deep

waters despite the significant decrease in the Tmd which is found in very large lakes.

1.3 Previous Studies of Thermal Bar Dynamics

Observations of the classical thermal bar have been made in most temperate Great

Lakes and several smaller lakes since the first studies of Lake Ladoga by Tikhomirov

(1963) and the Laurentian Great Lakes by Rodgers (1965). For example, Lakes Baikal

(Shimaraev et al. 1993, Parfenova et al. 2000), Superior (Hubbard & Spain 1973), Huron

(Moll et al. 1980), Michigan (Huang 1972, Bolgrien & Brooks 1992, Moll et al. 1993),

Ontario (Csanady 1971, Gbah & Murthy 1998), and Ladoga and Onega (Naumenko

1994, Avinsky et al. 1999) have all been the subject of detailed studies. Also, laboratory-

scale models of the laminar thermal bar in a non-rotating frame have been studied

(Elliott & Elliott 1969, Elliott & Elliott 1970, Kreiman 1989), and small-scale idealised

tank experiments have increased our understanding of the basic processes involved in

the cabbeling instability (Marmoush et al. 1984, Inaba & Fukuda 1986, Lankford &

Bejan 1986, Ivey & Hamblin 1989).

A review of the work referenced above highlights the strong sensitivity of the thermal

bar circulation to the particular bathymetry, wind stress, and surface heat flux of the

lake under consideration. The thermal bar is generally a large, long-lived density front

which emerges at some point in May or June and persists for one to two months. The

frontal propagation rate fluctuates in addition to decreasing with time, and may even

become negative under certain conditions (Hubbard & Spain 1973, Gbah & Murthy

1998). This fluctuation is due to the effects of wind, which may totally outweigh the

buoyancy-driven circulation in the short term. However, the thermal bar is usually

significant in the presence of a wind-driven circulation due to the persistence of the

buoyancy forcing (Csanady 1971, Scavia & Bennett 1980).

The thermal front is at least 1 km wide and all references show that the cabbeling

water within it sinks at a rate of 1 - 30×10−4 ms−1. Flows converging at the thermal

bar suppress most cross-frontal exchange so that it forms a barrier to horizontal mixing
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despite the lateral shear in longshore flows (Gbah & Murthy 1998). Flows perpendicular

to the shoreline are of order 10−2 ms−1, yielding mid-latitude Rossby numbers of O(10−1)

based upon a minimum length scale of 1 km. The strongest motion in the thermal bar

circulation is therefore the thermal wind which runs parallel to the thermal front (Huang

1971, Huang 1972). Many observers agree that these flows are O(10−1) ms−1, while cross-

frontal flows are O(10−2) ms−1 and the (relatively strong) descending flows are O(10−4)

ms−1.

While there are many thermal bar studies in which an inflowing river plays some part

in the spring warming of the shallows (e.g. Hubbard & Spain (1973), Moll & Brahce

(1986), Bolgrien et al. (1995)), detailed observations of predominantly-riverine thermal

bars are only available for a few Canadian lakes, of which those of Kamloops Lake are

by far the most comprehensive (St.John et al. 1976, Carmack 1979, Carmack et al.

1979, Wiegand & Carmack 1981, Carmack et al. 1986). This limited geographical and

bathymetric coverage makes it impossible to draw rigid conclusions about the differences

in character between riverine and classical thermal bars, but some general observations

may be made.

It seems obvious that, on any fixed bathymetry, the riverine thermal bar will prop-

agate more quickly because the lake water experiences a riverine heat flux in addition

to the surface heat flux. However, it is possible for riverine thermal bars to propagate

more slowly than their classical counterparts as they are able to exist as a well-defined

phenomenon in lakes with much steeper bathymetries. This allows increased advection

of heat downwards, reducing the horizontal spread of warmer water which is responsible

for moving the T = Tmd isotherm and thus slowing the propagation of the thermal bar.

Due to a higher spring warming rate, the warm waters inshore of the riverine thermal

bar are more likely to have the character of a surface gravity-current than in the classical

case. The wedge-like regions of warm water inshore of the classical thermal bar are

mixed a little more thoroughly as a result of its slower warming and propagation rates.

The riverine thermal bar may therefore exist as a mixing plume at the nose of a warm

surface intrusion, rather than acting on the boundary of a completely-warmed stable

shallow region. This allows a more significant return current to upwell inshore of the
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Tmd, producing the ‘arrested thermocline’ visible in Carmack (1979) and notably absent

from the details of Hubbard & Spain (1973), Naumenko (1994), and Gbah & Murthy

(1998).

All theoretical and numerical studies of the thermal bar to date have been limited to

the classical case. Killworth & Carmack (1979) constructed a one-dimensional ‘filling-

box’ model of Kamloops Lake with a river inflow at a seasonally varying temperature,

producing a good agreement with the observed annual variation of the lake’s (river-

dominated) thermal structure. However, there have not been any previous attempts at

modelling the effects of a range of riverine salinity and temperature distributions on the

thermal bar phenomenon or its resulting circulation.

Huang (1969) was the first to attempt a mathematical description of the thermal bar,

balancing coriolis and buoyancy forces in steady-state to yield the relevant temperature

and flow fields. Csanady (1971) later achieved similar results with a two-dimensional

numerical model. Transient features were then resolved by assuming a balance between

vertical shear and horizontal pressure gradients, using a two-dimensional model driven by

a one-dimensional temperature equation in the absence of horizontal convection (Elliott

1970, Elliott & Elliott 1970, Elliott 1971). This yielded the thermal bar position as a

function of time (agreeing well with field observations (Elliott & Elliott 1969, Elliott &

Elliott 1970)) and revealed that the cabbeling plume may be inclined to the vertical.

Rotational effects were introduced into two-dimensional numerical models by Ben-

nett (1971), Huang (1971), and Huang (1972) who employed a third, longshore coordi-

nate in which no gradients were permitted. These studies showed that the thermal wind

is the dominant flow of the thermal bar in large lakes, a result which is in agreement

with the asymptotics of Brooks & Lick (1972), who studied a rotating annulus under a

horizontally-varying surface heat flux.

The first model to incorporate a surface wind stress was that of Scavia & Bennett

(1980), who concluded that the thermal bar is highly susceptible to this forcing. Zil-

itinkevich et al. (1992) then refined the horizontal propagation rate estimates of Elliott

& Elliott (1970) by elucidating the effects of horizontal heat advection. The numerical
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and asymptotic results of Farrow (1995a) and Farrow (1995b) on the non-rotating case

then showed that the downwelling plume may become separated from the thermal front

due to inertial effects, a feature not yet noticed in the field.

In a departure from heat-balance or general circulation models, Kay et al. (1995) ob-

tained plume velocity and temperature gradient predictions as a function of the Prandtl

number by analysing the thermal bar as a free-convection boundary layer. Malm (1995)

then carried out a comprehensive numerical study of thermal bars under a range of

wind and bathymetric conditions, finding that the wind sensitivity is highly dependent

upon slope bathymetry, which strongly affects flow speeds even in the absence of a wind

forcing.

Gbah et al. (1998) are the only authors to adopt a higher-order turbulence closure in

the study of the thermal bar, obtaining turbulent diffusivities as part of the solution pro-

cedure and producing reasonable estimates of the bar formation and migration timescales

under a range of wind forcings. Tsvetova (1995) and Tsvetova (1999) made significant

advances with the first thermobaricity-resolving (and fully compressible) model of the

thermal bar applied to Lake Baikal but unfortunately failed to fully explore the details of

thermobaric control of the sinking plume. More recently, Botte & Kay (2000) (hereafter

referred to as BK) briefly studied thermobaricity as part of their plankton population

study in the vicinity of a spring thermal bar in Lake Baikal, and have also examined

the balance of wind, coriolis, and buoyancy forcings of this phenomenon (Botte & Kay

2001).

All of these works fail to scrutinise two significant aspects of the riverine thermal

bar circulation, which will therefore be the primary objects of this study. The first

is thermobaricity, which is crucial to the circulation of Lake Baikal and will be fully

examined in a deep domain representing the Selenga River delta (Holland et al. 2001).

The second is the effect of a riverine salinity influx, which will redistribute the buoyancy

forces and could provoke some very interesting dynamics, including the possibility that

saline plumes will overcome thermobaric effects (Holland et al. 2000, Holland et al.

2001). Other subjects addressed in this thesis include the influence of inflow velocity

and the effects of surface heating, coriolis forces, and bathymetry. The latter three are
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tested on a shallower domain which is a nominal fit to the bathymetry of Kamloops

Lake (Holland et al. 2002).

1.4 Lake Baikal

Lake Baikal in Siberia is the deepest lake in the world with a maximum depth of 1636 m

and has a volume of approximately 23,015 km3, comprising roughly 20% of the world’s

fresh surface water (Shimaraev et al. 1993). It is situated between 51:29 - 55:46◦N

and 103:40 - 109:55◦E, 456 m above sea level in the Baikal Rift Zone which completely

surrounds the lake. Figure 1.6 shows the bathymetry of Lake Baikal, which consists

of three major basins divided by the Selenga Delta and Academician Ridge, which is

situated near the Barguzin River inflow. The Central basin is the deepest, followed by

the South and North basins (figure 1.6).
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Figure 1.6: Lake Baikal bathymetry. Isobaths are given in metres.

Baikal is of scientific interest for many reasons, mainly due to its great depth and

age. The lake has accumulated sediments over 30 million years (Callender & Granina
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1997), which hold a unique continuous record of ancient climatic and biological condi-

tions. Improved research on the processes governing the spatial deposition of sediments

will bring a better understanding of both prehistoric climatic conditions in the area and

recent changes to the Baikal ecosystem (Edlund et al. 1995, MacKay et al. 1998, Kara-

banov et al. 2000). Lake Baikal has many aquatic plants and animals found nowhere

else in the world, comprising some 87% of the lake’s species, as a result of the unusual

penetration of oxygen to lacustrine depths at which pressures are extremely high and

light is scarce. The relative purity of Baikal waters, which is maintained by several

species of filtering copepod, make it a primary source of drinking water for the area and

thus also important in the local economy.

Construction of pulp mills next to the lake and on the Selenga River has provoked

strong protest from the local public and scientists, as the waste effluent discharges

directly into the lake and Selenga respectively. Waste water from nearby industry also

discharges into the Selenga and the total amount of industrial effluent in the area exceeds

300,000 m3 per day (ILEC n.d.). In total Votintsev (1993) calculates that over 800,000

tons of mineral salts from wastewater have been discharged into Baikal in the 15 years

since the first mill opened. Although Votintsev (1993) found that the effect on the

overall water quality was small, the localised effects of this pollution could be much

greater near sources of pollutants to the lake. One such source is the Selenga inflow,

whose delta is a major zone of heavy-metal retention (Grachev 1991). This is crucial

to the ecosystem because, among many other species, the delta harbours the largest

concentrations of Acipenser baerii baicalensis, Baikal’s unique subspecies of the Siberian

Sturgeon (Ruban 1997).

As shown in table 1.1, which is taken from Gronskaya & Littova (1991), the water

budget of Lake Baikal is absolutely dominated by riverine throughput, with Votintsev

(1993) calculating that 82.7% of the annual influx is contributed by rivers. After the

construction of Irkutsk hydro-power station in 1960 the outflow of the lake came under

control of the dam and the water budget changed, with Gronskaya & Littova (1991)

calculating a resulting inbalance of 0.46 km3yr−1.

Lake Baikal is fed by some 300 inflowing tributaries and has just one outlet, the Lower
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Angara River (figure 1.6). The largest inflow is the Selenga River, which contributes

approximately 49% of the total annual riverine inflow (Votintsev et al. 1965) from its

447,000 km2 watershed (Shimaraev et al. 1993). The climate of the Baikal area is

severely continental with long, cold and dry winters and very short cool summers. This

partly explains the dominance of riverine throughput to the lake, as evaporation and

precipitation totals are similar and budget contributions almost cancel each other out

when averaged over the year. The dominant riverine influx shows a marked annual

variability, with 70−80% of it occurring May-September due to increased precipitation

and the spring thaw.

Input km3yr−1

Riverine inflow 61.1

Precipitation 12.36

Total 73.46

Output km3yr−1

Outflow (Irkutsk HPS) 59.16

Evaporation 13.84

Total 73.0

Table 1.1: Water budget of Lake Baikal, 1962-1988, after damming of the

Lower Angara River (from Gronskaya and Littova (1991)).

Studies of various tracers in Lake Baikal have shown that it has an extremely active

circulation rate for its great depth, with deep waters ranging from 8 - 16 years of age

(time elapsed since last surface contact) depending upon location in the lake, and all

waters exceeding 80% of relative oxygen saturation (Weiss et al. 1991, Killworth et

al. 1996). A particularly fascinating observation is that bottom waters are commonly

younger than mid-depth waters (Weiss et al. 1991), which has led to great scientific effort

in determining the relative importance of the various large-scale convective mechanisms

in the lake. Although recent studies have shown that vertical diffusion in the depths

of Baikal is much larger than previously thought (Ravens et al. 2000, Kipfer et al.

2000), diffusion cannot be totally responsible for Baikal’s vigorous and localised vertical

transfer.
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An accepted source of deep-water renewal in Baikal is riverine inflow, particularly

the Selenga, as its plume can sink to the bottom of the Southern and Central basins

in April or May and October (Hohmann et al. 1997). The thermobaric instability has

also been cited as a probable cause of oxygen penetration to great depths (Weiss et al.

1991). Free convection is caused by this instability when a reversely-stratified body of

water is made conditionally unstable as the interface at the base of the mixed layer is

lowered to a depth where its temperature matches that of maximum density (Farmer &

Carmack 1981, Carmack & Weiss 1991, Walker & Watts 1995).

This instability mechanism is particularly relevant to this study because it has been

observed that the thermal bar can cause the vertical displacement of a water mass

which is necessary to trigger a deep mixing event via thermobaric effects (Shimaraev

et al. 1993). Also Walker & Watts (1995) found that the thermobaric instability is

a lot more effective at renewing deep waters when active adjacent to a boundary (or

river delta perhaps) rather than in an open lake. Work is still in progress to determine

whether the thermal bar alone is capable of ventilating the lower waters with assistance

from wind stress (Botte & Kay 2001), or salinity gradients (this study).

Unsurprisingly the geochemistry of Lake Baikal is dominated by riverine fluxes,

mainly due to the large proportion of the total water exchange contributed by rivers.

The small input into the lake from groundwater sources has not been chemically charac-

terised, but there is no evidence to suggest it plays a major role in the chemical balance

of the lake (Falkner et al. 1997). Contributions to the chemical fluxes in and out of

Baikal due to evaporation and condensation have also been shown to be generally in-

significant (Callender & Granina 1997). Hydrothermal vents in the north-eastern region

of Baikal appear to have negligible effect on the ionic balance of the lake when compared

to the 330-year time scale of riverine residence (volume/discharge).

Well-mixed conditions within the lake mean that the major ions do not generally

display a large spatial variability away from the shoreline. Thus Falkner et al. (1991)

have calculated a single value for weight-based salinity of 96.3±0.6 mgkg−1, which is

applicable for use in the equation of state (2.8) throughout the lake.
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While riverine effects dominate the salinity of Baikal, most tributaries do not have

much influence on the chemistry as they are either too small or are of a similar composi-

tion to the lake water. The Selenga River is a notable exception to this rule. Its salinity

is large with respect to the lake, at 126.8 mgkg−1, and its influence is accentuated by its

high discharge and the large distances Selenga water travels within the lake as a distinct

water mass (Votintsev 1993).

1.5 Kamloops Lake

Kamloops Lake in British Columbia, Canada, is a much smaller lake located in a relict

glacial valley on the Thompson Plateau, with steep embankments on all sides. In la-

custrine terms Kamloops Lake is still considered to be large, with a volume of 3.7 km3

and maximum depth of 143 m (St.John et al. 1976). It appears to be a widening of the

Thompson River, as it is very long and narrow, with a length of 25 km and an average

width of just 2.1 km (figure 1.7). The lake is situated between 50:26 - 50:42◦N and

120:03 - 120:32◦W, downstream of Kamloops City at 336 m above sea level.

Kamloops Lake is important as a primary rearing ground for three species of Pacific

Salmon; Coho, Chinook, and Sockeye (Ward 1964). It is also en route for many adult

Salmon returning to upstream breeding areas, as well as smolts heading downstream to

the Pacific Ocean. The lake was included in the recent 7-year Fraser River Action Plan

(FRAP) as part of the Thompson River (Gray & Tuominen 1999), which is a major

tributary of the deteriorating Fraser. Serious environmental concern over the Fraser

watershed prompted this wide-ranging ecosystem study which encompassed effects of

pollutants on the Thompson River’s wildlife.

Just upstream of the lake the Weyerhauser pulp mill discharges a daily average of

182,000 m3 of biologically treated effluent into the South Thompson River (ILEC n.d.).

In addition up to 35,000 m3day−1 of sewage from Kamloops City is discharged into

the river during October and November each year (ILEC n.d.). Improved treatment

and controlled release of these nitrogen- and phosphorous-rich effluents succeeded in

reducing nutrient loadings to the Thompson River, but ever-increasing mill activity has

almost outweighed this saving.
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Figure 1.7: Kamloops Lake bathymetry. Isobaths are given in metres.

Surprisingly this huge nutrient loading has not resulted in eutrophication of Kam-

loops Lake. In many ways the circulation of the lake is responsible for this, as consider-

able pollution problems have been encountered downstream (Carmack et al. 1979). The

high turbidity of the upper layers of the lake inhibit algal photosynthesis by blocking

light, and deep mixing of the river inflow transports pollutants away from the photic

zone. Also the low residence time of the lake means that any algal buildup is quickly

transported downriver.

The variability of circulation patterns within Kamloops Lake (due to changes in

inflow density and speed) creates more and less favourable times for the release of

pollutants into the lake. The concentration of substances entering the lake can be 20

times higher in winter than in the freshet period due to these effects (Carmack et al.

1979), as explained below.

The limnology of Kamloops Lake is controlled by the Thompson River, which enters

at the east end shortly after the North and South Thompson rivers converge below Kam-
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loops City. Many studies have shown how the discharge and thermal characteristics of

the South Thompson River govern the thermal stratification, residence time, and distri-

bution of dissolved matter within the lake (Ward 1964, Carmack et al. 1979, Killworth

& Carmack 1979). The Thompson River’s discharge into the lake has a large annual

fluctuation, with over 60% ocurring during the freshet period in May - July. Peak dis-

charge is in June at approximately 3,400 m3s−1 while flow from the Thompson is only

120 m3s−1 during February (St.John et al. 1976). Residence times are therefore very

short in Kamloops Lake, with an average of 60 days in a range of 20 - 340 days (Carmack

et al. 1979). The outflow of the lake is hydraulically controlled by the discharge cycle of

the upper Thompson River, creating a significant annual variation in the lake volume.

The maximum surface height variation in the year March 1972 - April 1973 was 7.67 m

corresponding to an increase in lake volume of approximately 10% (St.John et al. 1976).

The annual cycle of flow patterns is well-described in Carmack et al. (1979). The

spring circulation begins with the river water warming faster than the lake, so a thermal

bar is created as the inflow passes through the Tmd and propagates out into the lake

as warming continues. The lake then becomes stably stratified over the summer with

the lighter river water forming the initial thermocline and then flowing over the surface,

providing a swift transport through the lake. As the air cools in early autumn, the

summer stratification breaks down and the river cools so that it becomes denser than

the lake water and sinks upon entry to the lake. The equilibrium depth of this descending

flow (where its density matches that of the ambient lake water) sinks lower and lower

until the river water is spreading out along the lake bed, renewing deep waters and

producing the highest residence times. Another thermal bar is generated when the river

temperature passes below the Tmd in late autumn, before the whole lake cools to below

the Tmd and the colder inflow again becomes a surface overflow. As the new spring

approaches, the reverse winter stratification is broken when the inflow begins to warm

towards the Tmd, sinking to the lake bed before initiating the thermal bar circulation

once again.

As the outflow water from Kamloops Lake is always drawn from surface layers, the

depth of inflow determines the residence time of water within the lake. The inflow in

late spring has the lowest residence time of the year, flowing straight across the lake as
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a surface overflow while the South Thompson attains its peak discharge. This spring

runoff also has a high turbidity, which limits primary production in the lake by reducing

the depth of light penetration. The maximum residence time occurs in late winter as the

lowest discharge from the South Thompson combines with deep sinking of the inflow.

This yearly cycle of residence times and inflow plume behaviour creates a build-up of

soluble material in the lake during the winter and a flushing period in spring. This

is hazardous for the Thompson downstream of Kamloops, as the lake’s pollutants are

flushed into it at exactly the right time for algae to thrive.

The great variability in river discharge makes the salinity of Kamloops Lake hard

to characterise. St.John et al. (1976) calculated weight-based salinity from specific

conductivity to be in the range of 36 - 104 mgkg−1, with the lower values representing

the freshet peak in late spring and the highest values in winter after the gradual buildup

over the long residence time period. In summer, the South Thompson River’s salinity

can actually be lower than that of Kamloops Lake as a result of the high inflow discharge

(St.John et al. 1976).

1.6 Thermal Bar Interaction with Plankton Ecosys-

tems

As the thermal bar greatly affects the flow characteristics of most temperate lakes (see

section 1.3), it follows that is has a considerable influence on their ecological functioning

(Moll & Brahce 1986, Bolgrien et al. 1995, Bondarenko et al. 1996, Goldman et al. 1996,

Budd et al. 1999). This influence is extremely important, since a proper understanding

of an ecosystem’s interaction with relevant fluid phenomena is required to correctly

determine minimum-impact nutrient loading levels for a lake (Carmack et al. 1979, Lean

et al. 1987, Ullman et al. 1998). A comprehensive view of spatial plankton behaviour

could also allow the inference of useful information from sedimentation trends, especially

in the ancient, 6 km-thick sediments of the Selenga delta (Kozhova & Izmest’eva 1998).

A final motivation for the investigation of ecosystem effects is that the presence of

biomass may inhibit light penetration, reducing the surface heat flux and potentially

altering the regime of the thermal bar (Franke et al. 1999).
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Many studies have emphasised the importance of stability considerations in the

growth of plankton, as the restriction of vertical mixing by static stability prevents the

removal of biomass from the photic zone and thus promotes continued growth (Jasper

et al. 1983, Scavia & Fahnenstiel 1987, Bolgrien et al. 1995, Goldman et al. 1996, Botte

& Kay 2000). The thermal structure of a lake therefore strongly influences the produc-

tivity of its ecosystem. As a boundary between warm, stable, shallow waters and cool,

isothermal, deep waters, the thermal bar forms a barrier between favourable and less

favourable conditions for growth. As a result, the frontal zone often marks the position

of steep gradients in plankton biomass and available nutrients in addition to tempera-

ture. The passage of the thermal bar therefore heralds the spring phytoplankton growth

which accompanies the beginning of summer stratification and the autumn ecosystem

slowdown which follows the end of it (Moll et al. 1993, Avinsky et al. 1999).

The thermal bar’s influence on plankton population distribution is often not as a

simple boundary between regions of high and low biomass. Due to the horizontal flows

converging at the surface Tmd signature, the thermal bar may accumulate plankton,

other organisms and debris at the surface, forming a local population maximum (Mor-

timer 1974, Likhoshway et al. 1996, Avinsky et al. 1999, Parfenova et al. 2000). This

localised bloom depends upon the incoming flows of the thermal bar circulation to sup-

ply nutrients and avoid feeding limitation, so it follows the progression of the Tmd into

deeper waters as the surface heat flux continues.

Vertical motions associated with the thermal bar may also be particularly important

to lacustrine plankton populations. Certain types of plankton (particularly diatoms)

have significant sinking rates and therefore require upwelling motions to keep them in

the photic zone (Reynolds 1994, Kelley 1997), while the downwards transport of organic

matter leads to increased microbial activity at depth (Parfenova et al. 2000). Also

the upwelling of deep nutrient supplies may be crucial to the maintenance of surface

productivity (Lean et al. 1987).

BK are currently the only authors to model the effects of the thermal bar on a

plankton ecosystem, as many numerical plankton models still ignore spatial phenom-

ena such as currents, turbulence, sinking, and light penetration in favour of simple
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one-dimensional or box models (Truscott & Brindley 1994). Using a basic Nutrient-

Phytoplankton-Zooplankton (N -P -Z) model which is conditioned for nitrogen-limited

plankton in the oceans, BK produced a good fit to observations of a phytoplankton

bloom following the spring thermal bar in Lake Baikal (Likhoshway et al. 1996).

Due to the effects of dissolved and suspended matter, the influence of the riverine

thermal bar on ecosystem function is even more important than that of the classical

case (Jasper et al. 1983, Avinsky et al. 1999). The differing properties of river and lake

water mean that the spring riverine thermal bar operates as a barrier between nutrient-

rich, turbid, warm and stable waters inshore of the Tmd and relatively nutrient-poor

clear, cool and isothermal conditions offshore (Ullman et al. 1998, Budd et al. 1999).

Depending upon the exact balance of the river in question, this extra turbidity and

nutrient influx could either increase or decrease the favoured plankton growth inshore

of and at the thermal front.

Lacustrine plankton will also be affected by new populations which are carried by

an inflowing river. For example, these populations could seed a new plankton bloom

(Moll et al. 1993, Likhoshway et al. 1996) or increase predation (Avinsky et al. 1999),

depending upon the particular species and conditions in question. However, plankton

concentrations in rivers are generally lower than those in lakes, despite the difference

in temperature, because rivers have higher turbidities and are mixed more thoroughly

and flushed more rapidly (Soballe & Kimmel 1987, Reynolds 1994, Akopian et al. 1999,

Welker & Welz 1999). This means that, although conditions inshore of the Tmd are

favourable for plankton growth, there is generally a significant influx of plankton-free

water which may dilute or displace the in-situ growth (Soballe & Kimmel 1987, Avinsky

et al. 1999, Welker & Welz 1999).

Our lack of understanding of the riverine thermal bar becomes critical when con-

sidering the ecology of a river-dominated temperate lake, such as Kamloops. Although

there are no specific observations of plankton population distributions in the presence

of a riverine thermal bar, the general discussion of St.John et al. (1976) on the spring

growth in Kamloops Lake can be used in conjunction with the physical limnology study

of Carmack (1979) (which was undertaken at the same time) to form the basis of a nu-
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merical study of the ecology of a riverine thermal bar. To this end, this thesis presents

the results of a study which couples the N -P -Z plankton model of Franks et al. (1986)

(as used by BK) to the Kamloops Lake dynamical simulation introduced in section 1.3.

This work extending the simple results of BK to the riverine case is then scrutinised

further by adoption of the more sophisticated Nutrients-Phytoplankton-Zooplankton-

Detritus (N -P -Z-D) model of Parker (1991).

1.7 Overview and Objectives

Throughout this introduction, several deficiencies in our understanding of the thermal

bar have been identified, particularly in the riverine case. Employing the same numerical

modelling techniques throughout, this thesis addresses three distinct questions:

1. Is it possible for the riverine thermal bar to ventilate the deep waters of Lake

Baikal under the influence of salinity?

2. Is it possible to reproduce and test the flow field responsible for the riverine thermal

bar observations of Carmack et al. (1979)?

3. How does this riverine thermal bar affect plankton populations, in comparison to

the classical case?

The riverine thermal bar in Lake Baikal is modelled in an abstracted rectangular

deep domain which is nominally representative of the Selenga delta. A series of thermal

and haline scenarios are studied, elucidating the range of possible dynamics available to

the riverine thermal bar in a deep lake. Particular attention is paid to the influence of

thermobaricity and salinity on the vertical motions.

Computational requirements are then reduced by considering the much smaller do-

main which represents Kamloops Lake. This model is more realistic than the deep-lake

study, and is run for a longer timespan in order to include coriolis effects and qual-

itatively reproduce the results of Carmack et al. (1979). A sensitivity study is then

performed on the riverine thermal bar dynamics with respect to the various forcings

and subtleties of this improved model.
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The same physical model is then used in conjunction with various ecosystem models

to test the response of plankton populations to the riverine thermal bar. Particularly

riverine phenomena are identified by comparison of the N -P -Z model results with BK,

before the two models chosen for this thesis are compared to assess the value and appli-

cability of greater model sophistication.

The study begins with a discussion of the model formulation and numerical solution

in chapters 2 and 3, before a full discussion of the chosen turbulence parameterisation

is presented in chapter 4. Chapter 5 details the results of some preliminary simulations

in the deep lake section and full results of the deep-lake riverine thermal bar are then

presented in chapters 6 (non-saline) and 7 (saline). Attention then turns to the smaller

Kamloops Lake section, with all dynamical results contained in chapter 8 and results of

the two plankton models in chapters 9 (N -P -Z) and 10 (N -P -Z-D).
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Chapter 2

Model Formulation

In this chapter the characteristics of the mathematical model which is used to study

the riverine thermal bar are summarised. The underlying assumptions and governing

equations are outlined here, while a brief discussion of the Navier-Stokes equations is

given in chapter 4 as part of the explanation of the eddy-viscosity parameterisation.

The choices of lake bathymetry and boundary conditions are described seperately for

the Lake Baikal and Kamloops Lake cases, and then the ecosystem models used for the

plankton population studies are explained.

2.1 Governing Equations

While the thermal bar is clearly a phenomenon which generates significant flows in three

dimensions, it is simply impossible to run a complete three-dimensional model with

the limited computational resources available to this study. Following the approach of

many previous authors, a two-dimensional section is adopted on the basis that gradients

normal to the shore are much larger than those parallel to it, which are neglected

accordingly (Huang 1969, Malm 1995, Tsvetova 1999).

The model is based on a quasi-incompressible form of the Reynolds-averaged Navier-

Stokes equations which are derived in chapter 4. The x-coordinate is taken to be per-

pendicular to the shoreline and the z-coordinate represents depth, taken as positive

upward from the model bottom (see figures 2.4 and 2.8). For the purpose of calculating

coriolis forces, the y-coordinate is defined in the Kamloops Lake model in the alongshore

direction (figure 2.2), or ‘into the page’ in figure 2.8.
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As mentioned above, variations in the alongshore direction are taken to be zero (i.e.

∂
∂y

= 0) such that all dynamics are driven by the cross-frontal gradients. However, the

momentum equation of v, the flow component in the y direction, is included in the

model so that coriolis forces may be calculated in the other momentum equations when

necessary in the Kamloops Lake study.
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Figure 2.1: Approximate position of Baikal section and orientation of axes.
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Figure 2.2: Approximate position of Kamloops section and orientation of

axes.

Under these assumptions the continuity equation is written as:

∂u

∂x
+

∂w

∂z
= 0 (2.1)
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where u and w are the velocity components in the x and z directions respectively.

In the quasi-incompressible momentum formulation applied here the Boussinesq ap-

proximation is adopted, whereby the density is supposed constant, ρ = ρc, everywhere

except in the buoyancy term of the equation for w, the vertical velocity component

(Boussinesq 1903). ρc is taken to be the maximum density of water at surface pressure

and zero salinity, assumed to be ρc = 999.975 kgm−3 when p = S = 0 and T = Tmd.

As described in chapter 4, the Boussinesq (1877) eddy-viscosity concept is adopted

whereby the Reynolds stress terms are incorporated in the momentum equations via

eddy-viscosity coefficients, which are assumed to be different in the vertical and hori-

zontal directions.

Adopting these hypotheses the three components of the momentum equation can be

explicitly written as:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
=

∂

∂x

(
Ah

∂u

∂x

)
+

∂

∂z

(
Av

∂u

∂z

)
− 1

ρc

∂p

∂x
+ 2Ωzv − 2Ωyw (2.2)

∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
=

∂

∂x

(
Ah

∂v

∂x

)
+

∂

∂z

(
Av

∂v

∂z

)
+ 2Ωxw − 2Ωzu (2.3)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
=

∂

∂x

(
Ah

∂w

∂x

)
+

∂

∂z

(
Av

∂w

∂z

)
− 1

ρc

∂p

∂z
− ρ

ρc

g + 2Ωyu− 2Ωxv (2.4)

where Ah and Av are eddy-viscosity coefficients in the horizontal and vertical directions

respectively, Ωx, Ωy, and Ωz are the components of the Earth’s angular velocity vector,

Ω, and g is the acceleration due to gravity. It is emphasised here that equation (2.3) and

the coriolis forcing terms of equations (2.2) and (2.4) are not used in the deep domain

model of Lake Baikal.

The vector Ω has magnitude:

|Ω| = 2π

86, 400
s−1 (2.5)

and in cartesian coordinates its components are:

Ωx = |Ω| cosφ sin δ

Ωy = |Ω| cosφ cos δ (2.6)

Ωz = |Ω| sinφ

26



where φ is the latitude of the section and δ represents the orientation of the section

relative to north. When coriolis is included in the model, a Kamloops latitude of φ = 52◦

is adopted, along with a nominal section angle of δ = 85◦ which is chosen to represent

the centreline of Kamloops Lake near the South Thompson inflow.

Examination of the momentum equation for the transverse velocity (2.3) gives rise

to the concern that coriolis forces may produce spurious intertial oscillations as a result

of the neglect of the pressure terms, which would otherwise balance these accelerations.

However, closer examination of the terms in this equation shows that the coriolis forcings

are generally significantly smaller than the transport terms (at O(10−7) ms−2 to O(10−4)

ms−2 respectively), and the transverse velocity is therefore controlled by forcings within

the two-dimensional section. This analysis is consistent with the observation that inertial

oscillations are absent from all of the results.

The transport of the scalar quantities of temperature, T , and salinity, S, which

create the density variations of interest, is represented here by a simple advection-

diffusion balance. The components of each plankton model are also governed by this

equation and, since density dependance on both temperature and salinity is included

in the equation of state (2.8), a scalar ‘tracer’, ϕ, is introduced which effectively tracks

the river inflow to the lake for unbiased visualisation purposes. This tracer can be used

to follow substances carried by the fluid which do not affect the flow, such as neutrally-

buoyant pollutants, and is used here to assess the general characteristics of transport

by each thermal bar. The transport equation for a general scalar quantity, Φ, is written

as:
∂Φ

∂t
+ u

∂Φ

∂x
+ w

∂Φ

∂z
=

∂

∂x

(
Kh

∂Φ

∂x

)
+

∂

∂z

(
Kv

∂Φ

∂z

)
(2.7)

where Φ = T, S, ϕ, and plankton components as discussed later. In these equations Kh

and Kv are eddy diffusion coefficients for scalar properties, which are assumed to be

equal to Ah and Av for all Φ as they primarily quantify transport of information due

to convective motions on a subgrid scale rather than any particular rate of molecular

diffusion.

The density calculations employ the equation of state given by Chen & Millero

(1986), who claim an accuracy exceeding 2×10−6 gcm−3 over the range of 0 − 600
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mgkg−1 salinity, 0◦ − 30◦C, and 0− 180 bar. These values are more than sufficient for

the ranges encountered in Lakes Baikal and Kamloops, so the following formulation is

adopted:

ρ(p, S, T ) = ρ0

(
1− p

H(p, S, T )

)
−1

(2.8)

where

ρ0 = 0.9998395 + 6.7914× 10−5T − 9.0894× 10−6T 2 + 1.0171× 10−7T 3

− 1.2846× 10−9T 4 + 1.1592× 10−11T 5 − 5.0125× 10−14T 6

+ (8.181× 10−4 − 3.85× 10−6T + 4.96× 10−8T 2)S

and

H(p, S, T ) = 19, 652.17 + 148.113T − 2.293T 2 + 1.256× 10−2T 3 − 4.18× 10−5T 4

+ (3.2726− 2.147× 10−4T + 1.128× 10−4T 2)p

+ (53.238− 0.313T + 5.728× 10−3p)S.

Here ρ and ρ0 are in kgm−3, T is in ◦C, S is in gkg−1, and p and H are in bars. Note

that the entire formulation of (2.8) must be used as pressures ranging up to ≈140 bar

may be reached in a lake of Baikal’s great depth.

2.2 Boundary Conditions

The chosen models of the riverine thermal bar include a mass flux from the inflowing

river into the domain. In order to preserve continuity there must be an accompanying

outflow, so boundary conditions must be set on a 2-dimensional lake cavity with a free

surface and inflow and outflow regions in the side boundaries. Diagrams of each model

domain are given in figures 2.4 and 2.8.

The rigid lid approximation is used in this model, whereby all vertical displacements

of the free surface (z = F ) are neglected, which is reasonable given the vertical resolution

of each grid. Apart from the surface heat flux applied to Kamloops Lake (described in

section 2.4.2), all mechanical forcings and scalar fluxes at the surface are ignored so

that the fundamental dynamics are buoyancy-driven by riverine sources. This gives the

conditions on the free surface as:

∂u

∂z


F

=
∂v

∂z


F

=
∂Φ

∂z


F

= w


F
= 0 (2.9)
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where Φ = T, S, ϕ and all plankton model components.

On all solid boundaries the velocity components and fluxes of scalar quantities across

the boundary are set to zero. Thus the conditions on a solid boundary B are:

∂Φ

∂no


B

= u


B
= v


B

= w


B
= 0 (2.10)

where no is the co-ordinate direction normal to the boundary.

The influx of a scalar variable Φ is modelled by assuming the value of ΦR to act on

the cells in the first column of the domain which are adjacent to the open boundary rep-

resenting the river mouth. Thus on the open inflow boundary, BoI , the scalar conditions

are:

Φ


BoI

= ΦR. (2.11)

Neumann boundary conditions are set for the scalar quantities over the outflow bound-

ary, BoO, so that
∂Φ

∂x


BoO

= 0. (2.12)

In every simulation the scalar tracer is initially assigned values of ϕR = 1 in the

inflow and ϕL = 0 in the domain such that the concentration of river water everywhere

in the lake can be viewed as a mixing ratio on a scale of 0 (pure lake water) to 1 (pure

river water). Explicit values of the initial and inflow values of salinity and temperature

are given for each case in sections 2.3.2 and 2.4.2.

Similar conditions are set for velocity at the open parts of the side boundaries, Bo,

representing the river inflow and outflow. The horizontal velocity in the plane of the

section, u, is fixed to the rate of river flow on both sides, while perpendicular and vertical

velocities v and w are not constrained by shear effects, giving:

u


Bo

= uR (2.13)

and
∂w

∂x


Bo

=
∂v

∂x


Bo

= 0. (2.14)
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An horizontal riverine velocity is ascribed to the inflow because it seems more phys-

ically reasonable to have a mass flux into the domain than a purely diffusive river flow.

All simulations start from a flow-field consisting of uR attributed to the top rows of cells

in the domain which are between the inflow and outflow and zero velocity everywhere

else (e.g. figure 2.3). This initial velocity distribution represents an idealised situation

in which a river of equal density to the lake passes directly across the surface due to a

lack of any buoyancy forcing.
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Figure 2.3: Initial velocity field for all Lake Baikal simulations shown at half

of the actual grid resolution

Under the conditions of these initial velocity fields (particularly w = 0 everywhere),

and zero coriolis force, the vertical momentum equation (2.4) yields the hydrostatic

equation:
∂p

∂z
= −ρg. (2.15)

Under the condition of p


F
= 0, this is used to iteratively calculate the initial fields of

pressure and density from thermal and haline information, a procedure which is required

due to the explicit dependance of density on pressure which is an important feature of

this work.

Examination of results from thermal bar simulations show that the approach of

simply fixing velocities on the open boundaries causes inaccuracies in the predicted

flows once the thermal bar has traversed the lake and approaches the arbitrary outflow

condition. In reality, neither the far boundary (opposite the inflow) nor the fixed velocity

on the open outflow region exist. Therefore, in order to preserve the applicability of

model findings, the results are disregarded as soon as the influence of the arbitrarily-
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fixed outflow rate on the far boundary becomes apparent in the predicted dynamics.

The stage at which this happens is decided by running test simulations on a wider

domain and determining the point at which the two sets of results disagree significantly,

as described in sections 2.3.4 and 2.4.3.

The obvious solution to these problems seems to be a change in outflow velocity

conditions. Unfortunately, in order to simulate a mass flux through the domain there

are only two possible choices of condition on the horizontal velocity component at this

surface outflow, a fixed-velocity Dirichlet condition as chosen here, or a Neumann con-

dition:
∂u

∂x


BoO

= 0, (2.16)

such that for each row of cells the horizontal velocity over the outflow region is simply

assumed identical to the horizontal velocity at the adjacent column of cells in the interior

of the lake. Unfortunately, however, the rigid-lid condition at the surface implies that

a Neumann condition, via the assumption of incompressibility, will forbid any vertical

flow at all in the outflow cells of the column immediately adjacent to the right-hand

boundary.

This consideration has a severely detrimental effect on the flow-field after relatively

short periods of time, so there is no choice but to proceed with the fixed value of outflow

velocity uR. Since this condition has little effect on the flow-field until the thermal bar is

relatively close to the outflow (as shown below), results are considered to be valid before

this point and disregarded afterwards. Lessening the effects of the outflow by dividing

uR over the entire far boundary is not considered to be a solution to these problems

because this method may draw inflowing waters downwards and thus ruin the delicate

quantification of vertical transport which a primary achievement of this study.

As this study focuses on density effects, uR should be kept low so that the river

enters the lake as a buoyancy-dominated plume rather than a jet. However, a purely

diffusive inflow (i.e. with uR = 0) seems somewhat unrealistic in rivers with spring

discharge values of the magnitude of the Selenga and South Thompson. Also the case of

zero inflow velocity is a rather similar scenario to the ‘classical’ thermal bar generated

by warming of shallow regions from a surface heat flux, which has been studied in detail
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by many authors (as summarised in chapter 1). In each simulation a reasonable value of

uR is chosen so that the horizontal momentum flux has an effect but does not dominate

the propagation of the riverine thermal bar.

2.3 Lake Baikal Dynamical Model

2.3.1 Domain and General Remarks

To enable a fundamental study of the processes governing the riverine thermal bar in

a deep temperate lake, the domain onto which these equations are applied is chosen to

be a simple rectangular box of depth F = 1 km and width L = 6 km, as shown in

figure 2.4. To properly resolve the subtle gradients responsible for the thermal bar and

thermobaric effects, a grid cell in the deep-lake study has the dimensions of hx = 20 m

× hz = 5 m, producing a system of 60,000 grid nodes. Since the timestep is limited to

a maximum of ∆t = 30 s to ensure convergence of the numerical procedure (and less in

some of the higher-salinity simulations), the system cannot be solved over long periods

of model time with the computational resources available to this study.

Coriolis forces are neglected in this deep-lake study due to the brevity of each sim-

ulation. Numerical testing has shown that during the first few days of simulation the

coriolis forces engage in a period of ‘spin-up’ whereby they act in the opposite direction

to their long-term influence in an effort to initiate the v-velocity (see section 8.2.2).

In the Baikal simulations, this means that the coriolis force would have a misleading

influence throughout the whole period of thermal bar development. In any case, it is a

worthwhile study to elucidate the buoyancy forcings governing the riverine thermal bar

in a deep lake in the absence of rotation, which can then be included in future work.

Boundary conditions (2.11) - (2.14) are fixed on open inflow and outflow regions

which are taken to be 50 m deep in this case. A discussion of the initial and boundary

conditions for temperature and salinity is given in sections 2.3.2 and 2.3.3, while the

rest of this section is concerned with presenting a reasoned basis for the domain choices

outlined above.
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Figure 2.4: Chosen Baikal section with positioning of axes and river sources.

Initially the shape of this domain may seem to be an oversimplification of the problem

but this choice ensures that the underlying buoyancy-driven dynamics, which are the

object of this study, are not obscured by effects relating to the topography of any

particular Baikal section. Most importantly, this choice of domain ensures that the

results presented in this work could be regarded as generally applicable to any deep

temperate lake with a riverine forcing.

A triangular river-delta section in the style of Malm (1995), or exact Selenga Delta

bathymetry, seem to be better choices in that they are more realistic than a rectangular

box and yet are still fairly generalised sections. In a domain of this type, however, it is

extremely difficult to assign reasonable boundary conditions on the open-lake boundary

opposite the shallow near-shore region. This is solely due to the river inflow, since

a symmetry condition similar to that of Malm (1995) implies a lake with an inflow

at both sides whenever salinity is introduced. Alternatively, a shallow near-surface

outflow condition similar to that of the chosen section would give an unrealistic ‘wedge’

geometry, while a completely open bound is not desirable as the necessity of setting

a nominal velocity condition on the bound would adversely affect the predictions of

vertical convection, potentially causing water to sink due to mechanical rather than
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buoyancy forcings.

2.3.2 Boundary and Initial Conditions

Setting riverine boundary conditions for the deep-lake study is particularly troublesome

due to a lack of detailed temperature and flow rate data from either the Selenga River

or any other river flowing into Baikal. Thermal data are virtually nonexistant in the

literature, and personal enquiries at the Limnological Institute in Irkutsk revealed only

monthly data from the 1970s, which were taken at a station in the shallow Selenga River

upstream of the river delta. In these data the Selenga River switches from TR ≈ 3◦C

in early May to TR ≈ 19◦C in late June with no intermediate readings (R. Gnatovskii,

personal communication).

While the ideal model of the riverine thermal bar would involve a coupled river and

lake which are initially cooler than the Tmd and then subjected to a surface heat flux, the

data and long runs required by this approach makes it unfeasible for the purposes of the

deep-lake study. Warming of the river and lake is therefore simulated by two separate

one-dimensional ‘preconditioning’ models under a surface heat flux, as described in

section 2.3.3 below. The results of these models are then used after various simulation

times to provide boundary and initial conditions for the main two-dimensional mixing

studies. By altering the river salinity in certain scenarios it is then possible to complete

a dynamical study of a range of conditions present during the generation of a riverine

thermal bar in a deep lake.

Salinity is initially assumed to have a homogeneous distribution in the river and lake,

at the average Baikal value of SL = 96.3 mgkg−1 (Falkner et al. 1991). The salinity of

the Selenga River is given at 126.8 mgkg−1 by Votintsev (1993) but unfortunately this

accurate value is again inappropriate for this study because considerable dilution must

take place in the shallow delta region between the river mouth (where the reading was

taken) and the 50 m-deep inflow of our model. Salinity increases of just 1, 2, 5, and

10 mgkg−1 are therefore applied to the river (in each thermal case) while SL is kept

constant.

A nominal river velocity of uR = 0.005 ms−1 is adopted throughout the deep-lake
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work, a value which is quite difficult to justify in this somewhat idealised model. Monthly

discharge rates seem to be the only flow data available for the Selenga river (Shimaraev

et al. 1994), and without any information of the shape or depth of the river delta this is

of little use when considering a 50 m deep inflow to a two dimensional section. However,

these data do show that there is a significant annual variability in Selenga discharge into

Baikal, and an increase from 7.9 m3s−1 to 166.9 m3s−1 occurs over the warming period

of March to July (calculated from Shimaraev et al. (1994)), which allows some freedom

in our choice of an exact value.

To examine the effect of uR, results are presented in section 6.3 from a comparison

of predicted velocity vectors from three T9 simulations, with uR = 0, 0.005, and 0.01

ms−1. The thermal characteristics of the basic T9 simulation and an explanation of the

simulation-naming convention are described in the next section and appendix A.

2.3.3 One-dimensional Models and Thermal Scenarios

These studies of cabbeling in a deep lake are intended to reveal the particular forcing

mechanisms behind the dynamics of the riverine thermal bar at several stages of the

spring warming process. For this reason the initial conditions for the lake and the

boundary conditions for the river need to be as realistic as possible given the spring

warming regime in and around Baikal, and one-dimensional preconditioning models

are adopted. This is the most realistic alternative to employing simulations in which

the river and lake gradually warm through the Tmd, which is not possible with the

computational resources available to this study.

The preconditioning models are based on the unsteady diffusion equation

∂T

∂t
=

∂

∂z

(
Kv

∂T

∂z

)
(2.17)

where formulation (4.15) is adopted for Kv. Radiative heating is simulated through a

thermal boundary condition at the surface, which is written in terms of the surface heat

flux Qs as

ρccpKv

∂T

∂z
= Qs (2.18)

where cp is the specific heat at constant pressure and Qs is measured in Wm−2 and is

considered positive when entering the domain, i.e. directed towards negative z. A value
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of Qs = 250 Wm−2 is used throughout the model, which corresponds to the June value

given by Shimaraev et al. (1994). A percentage of the solar radiation is supposed to

pass through the surface to deeper regions of the lake, and the resulting heat source is

assumed to have an exponential decay in intensity with depth. The vertical attenuation

coefficient of this decay is taken to be 0.3 m−1, the value used by BK.

The river and lake are both assumed to have an initial temperature of 3.4◦C, which

is a realistic value for the given regions of Lake Baikal immediately prior to the onset

of cabbeling, as shown in figure 2.5. The riverine thermal bar is then studied in three

different forms by utilising results of the one-dimensional models after 7, 9, and 11 days

of simulation, when the river is warmer than the Tmd but the lake is still cooler (see

figure 2.6). This gives an insight into the range of thermal bar circulations which may be

achieved with different riverine forcings, and the metamorphosis of the riverine thermal

bar during the spring warming.

In reality it is impossible to tell whether the one-dimensional river model gives a

reasonable representation of the river warming in spring. These preconditioning models

are used primarily to give a qualitative indication of the river and lake temperatures

relative to the Tmd at various stages of the spring warming, and are thought to be slightly

more reasonable than simply guessing temperatures for the river and lake. Due to the

lack of data the river temperature is fixed during the actual mixing studies, which is the

most sensible choice since any warming rate cannot be physically justified.
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Figure 2.5: Vertical temperature profiles measured in 1996 at the centre of

the South Basin.
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Figure 2.6: Results of the one-dimensional preconditioning models: (a) ini-

tial lake temperatures, (b) river temperatures throughout the

simulation.
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In order to simplify the discussion, the following nomenclature is adopted to identify

each of the 12 different thermal bar simulations in this deep-lake study. A simulation is

referred to as TτSσ, where τ is the number of days of simulation of the one-dimensional

river and lake models before mixing and σ is the amount of salinity added to the river

in mgkg−1. For example, T9S2 is the case mixed after 9 days with a salinity increase

of 2 mgkg−1, producing an absolute riverine salinity of 98.3 mgkg−1.

2.3.4 Validity Timespan of results

The timespan over which the Lake Baikal simulations are considered reasonable is limited

by many factors, most of which are the assumptions which are necessary to cover a lack

of data or computational resources. For example, the effects of the Earth’s rotation are

neglected on the basis that a short simulation is in a state of spin-up throughout, and

in-situ surface heating of the lake and variation of the river temperature can be neglected

because on short timescales these thermal changes are negligible in comparison with the

underlying temperature difference between the river and lake. Also river inflow velocity

is held to be constant despite the increasing Selenga discharge noted during spring by

Shimaraev et al. (1994).

Due to the lack of available data on the variation of these factors, it is impossible to

comment upon their effects on the rate of degradation of the solution validity. However,

one validity-limiting factor which becomes important rather quickly is the presence of

a solid boundary (with a fixed-velocity river outflow) only 6 km from the source of

the riverine thermal bar. The effects of this false boundary are examined with a test

simulation, T9D, which is identical to simulation T9 but has a domain width of 10 km.

Figure 2.7 shows a comparison of vertical velocities with 6 and 10 km domain widths

after 4 and 8 days of simulation. Figure 2.7(a) reveals that the arbitrary outflow does

not affect the thermal bar after 4 days but clearly after 8 days the horizontal propagation

of the thermal bar is quickened by the presence of the fixed-velocity outflow in its path

(figure 2.7(b)).

While this finding discredits the applicability to Lake Baikal of results from around

the 8-day period and later, flow patterns from day 8 can still be used in section 6.1.1
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to illustrate the importance of the thermobaric supression of vertical flows and to draw

comparisons with the laboratory findings of Marmoush et al. (1984). Also, results

after long periods of simulation are successfully employed in section 4.5 to justify the

chosen parameterisations of the vertical eddy-viscosity, as it is the long-term behaviour

of buoyancy forces which is of interest in that procedure rather than the accuracy of

predicted flows.
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Figure 2.7: Effect of the far boundary on vertical velocity at 25 m depth in

simulation T9 : (a) after 4 days, (b) after 8 days.
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2.4 Kamloops Lake Dynamical Model

2.4.1 Domain and General Remarks

The good availability of temperature data showing the riverine thermal bar of Kamloops

Lake means that this model can be approached as a realistic case study of the riverine

thermal bar rather than a test case designed to produce fundamental results. The 150

m maximum depth of Kamloops Lake is also crucial to this difference, as it allows a

drastic reduction in the number of grid nodes even though a relatively fine resolution

is maintained. This means that much longer simulations (of 30 days or more) can be

produced at the same computational expense as the deep-lake work.

The ability to perform much longer simulations means that in this case it is possible

to employ the desired scenario of starting with a river and lake which are cooler than

the Tmd and then heating both until the river warms through the Tmd and the thermal

bar appears. As described in the next section, this plan is implemented by applying a

surface heat flux to the lake and raising the river temperature uniformly throughout the

simulation.
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Figure 2.8: Chosen Kamloops section with positioning of axes and river

sources and a sample of the grid-spacing.

In these simulations a grid cell has the dimensions hx = 25 m × hz = 3 m, and the
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lake section is taken to be a 10 km × 150 m box with a river inflow on the right-hand side

(figure 2.8). Since the aim of this study is to produce a faithful prediction of Kamloops

Lake in spring, a sloping river delta is placed underneath the South Thompson River

inflow, which is taken to be 15 m deep in this work. This produces a computational

grid of only 19,010 nodes which, in conjunction with a doubled timestep of ∆t = 60 s,

allows a massive increase in reasonable simulation times.

As well as permitting changes to the thermal regime, these longer simulation times

contradict the basis of the neglect of coriolis forces. The simulations are lengthy enough

for the predicted flows to spin up properly from rest, so coriolis forces can be accurately

represented in the later stages of the Kamloops Lake model.

2.4.2 Boundary and Initial Conditions

All thermal data for the standard Kamloops Lake model (simulation K ) are taken,

calculated, or inferred from the work of Carmack (1979) and Carmack et al. (1979).

The lake is initially assumed to be isothermal, with TL = 2.4◦C, while the river initially

has TR = 3.6◦C, a scenario approximately corresponding to the status of Kamloops

Lake and the South Thompson River on April 8th, 1975. The lake is then subjected to

a surface heat flux using a similar condition to the one-dimensional models of section

2.3.3, but with Qs = 170 Wm−2. While this heating continues the river is warmed

uniformly by 0.2◦C day−1, so that the thermal bar appears on the third model day.

The simulation is continued for 27 days after this in order to reproduce longitudinal

Kamloops isotherm sections given in Carmack et al. (1979).

Salinity in Kamloops Lake is supposed to be uniform at 100 mgkg−1 (St.John et al.

1976) and the river’s salinity is fixed to the same value for the purpose of reproducing

the measured spring thermal bar. As a sensitivity study, riverine salinity is later varied

in a similar manner to the deep-lake work and it is found that changes of up to 50

mgkg−1 are necessary to significantly affect the dynamics of this riverine thermal bar.

To ease the comparison of results from this simulation with the data of Carmack

(1979) and the numerical results of BK, the river inflow is taken to enter the lake on the
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right-hand boundary but the model coordinates and origin stay the same. The inflow

velocity therefore takes the value of uR = -0.01 ms−1, a speed which is chosen arbitrarily

on the same basis as before.

2.4.3 Validity Timespan of results

These longer simulations on the shallower lake have far fewer simplifying assumptions

to restrict the validity of results. All of the limiting factors listed in section 2.3.4 are

resolved here apart from a variation in river discharge and the existence of a false

boundary facing the river inflow. Since there is no data on the variation of the South

Thompson River flow rate, it is left to the influence of far boundary effects to govern

the maximum timespan of supported results.
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Figure 2.9: Effect of the far boundary on vertical velocity at 7.5 m depth in

simulation K : (a) after 16 days, (b) after 24 days.

42



Figure 2.9 shows near-surface vertical velocity profiles from simulations K and KD,

which have domain widths of 10 and 20 km respectively. The far boundary clearly grows

in importance to the flow-field during the simulation, and the effects on the thermal bar’s

propagation are seriously adverse after 24 days (figure 2.9(b)). Although the general

character of the vertical flow within each thermal bar is the same after this time, the

position and strength of the main downwelling is altered by the fixed-velocity outflow,

which pulls the thermal bar across the lake.

2.5 Ecosystem Modelling

Coupling a multi-component biological model to the dynamical study described in the

preceding sections is a relatively straightforward process. As with the other scalar

quantities, the variable representing the ith component of the model, Ci, is governed by

an advection-diffusion balance:

∂Ci

∂t
+ u

∂Ci

∂x
+ w

∂Ci

∂z
=

∂

∂x

(
Kh

∂Ci

∂x

)
+

∂

∂z

(
Kv

∂Ci

∂z

)
+ SCi

(2.19)

where SCi
represents the source terms which contain the interaction between plank-

ton model components, such as photosynthesis of nutrients, zooplankton grazing, and

plankton mortality. Formulating any particular plankton model therefore becomes a

question of deciding the number and type of components Ci and processes governing

the interactions contained in SCi
.

The description of the ecosystem modelling begins with a discussion of the sets of

source terms comprising the two plankton models used in this thesis. A full description

is then given of the difficulties involved in setting initial and boundary conditions for

the plankton model components in the absence of detailed data.

2.5.1 Plankton Model of Franks et al. (1986)

The simplest plankton model adopted in this work is that of Franks et al. (1986), which

has only three components: Nutrients, Phytoplankton and Zooplankton. As this model

is used in BK to study plankton populations in the vicinity of the classical thermal bar,

it is also adopted here in order to provide an initial model comparison and therefore

reveal which parts of the ecosystem evolution are specifically riverine.
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This influence over the model choice has a minor drawback: the Franks et al. (1986)

model is conditioned for a Nitrogen-limited system while St.John et al. (1976) find that

production in Kamloops Lake is co-limited by Nitrogen and Phosphorous during the

spring warming and associated plankton growth. However, the negative impact of this

particular situation is limited because this model is conditioned for the pelagic marine

ecosystem and thus only a qualitative first description of the plankton distribution in

the vicinity of the riverine thermal bar is sought. In a model this simple the nutrient

variable could be assumed to be any combination of the nutrients limiting production

at a particular time.

The full formulation of each source term is as follows:

Phytoplankton:

SP = (G−mP ) P − IZ (2.20)

Zooplankton:

SZ = [(1− γ)I −mZ ] Z (2.21)

Nutrients:

SN = (−G + mP ) P + (γI + mZ) Z (2.22)

where G is the phytoplankton primary production rate:

G = Vme−ηd N

N + ks

(2.23)

and I is the zooplankton grazing rate:

I = RmΛP
(
1− e−ΛP

)
. (2.24)

It can be seen from equation (2.23) that in this formulation the uptake of nutrients by

phytoplankton follows the Michaelis-Menten relation with a half-saturation constant of

ks. Primary production is also light-limited, with the penetration of sunlight following

an exponential decay with depth. The grazing formulation (2.24) is of the Mayzaud

& Poulet (1978) food-acclimatised type, which assumes that the zooplankton ingestion

rate rises as food concentrations increase, so that the grazing rate has no asymptotic

limit (Parsons et al. 1967). The other interactions are all relatively simple, with constant
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plankton mortality rates and an ‘unassimilated fraction’ of the zooplankton grazing, γ,

which is not converted into biomass and therefore returns to the nutrient pool.

Table 2.1 shows the values adopted for the various parameters in the model, all

of which are chosen to match the simulation of BK for comparative purposes. These

values originate from Franks et al. (1986) and Wroblewski & Richman (1987), and are

all adopted here so that the ecology of the riverine thermal bar can initially be predicted

using a highly simplified and well-understood model. Note that the units in which the

component concentrations are expressed are all converted from µg-atom N l−1 in the

original model to mmol N m−3 here1 and that all values listed as day−1 are converted

into s−1 for use in the numerical procedure.

Parameter Description Value

Vm Maximum phytoplankton growth rate 2.0 day−1

η Light extinction coefficient 0.1 m−1

ks Nutrient uptake half-saturation constant 0.2 mmol N m−3

mP Phytoplankton death rate 0.1 day−1

Rm Maximum ingestion rate of zooplankton 0.5 day−1

Λ Ivlev constant for zooplankton grazing 0.5 mmol N m−3

γ Unassimilated fraction of Z grazing 0.3

mZ Zooplankton death rate 0.2 day−1

NL-PL-ZL Initial lake values of N -P -Z 4-1-1 mmol N m−3

NR-PR-ZR River boundary conditions for N -P -Z 4-1-1 mmol N m−3

Table 2.1: Parameters and conditions for the plankton model of Franks et

al. (1986)

1The letter N is used several times in this thesis to represent quite different quantities. N represents

the nutrient component in a plankton model, while N is the Nitrogen in which all components of the

plankton models are expressed. In addition, N 2 is defined as the stability (i.e. the square of the Brunt-

Väisälä frequency) and N(α,β) is used in equation (2.31) to indicate a normal distribution with mean

α and variance β.
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2.5.2 Plankton Model of Parker (1991)

In order to test the shortcomings of the Franks et al. (1986) model both in this work and

that of BK, the more sophisticated ecosystem model of Parker (1991) is also coupled

to the Kamloops Lake dynamical model in a separate study. This model contains a

fourth component, detritus, which represents the distribution of deceased plankton cells

and zooplankton fecal matter. This component therefore presents an intermediate stage

between plankton and nutrients, which could slow ecosystem development by prevent-

ing the Nitrogen in these plankton byproducts from immediately becoming available

nutrients for further phytoplankton growth. Other additional features of this model

are temperature dependance, a total reformulation of the light-limitation of primary

production, and the adoption of a constant zooplankton grazing rate.

The interactions are formulated as follows:

Phytoplankton:

SP = [(G−mP − IZ) P ] q (2.25)

Zooplankton:

SZ = [((1− γN − γD) IP −mZ)Z] q (2.26)

Nutrients:

SN = [−GP + γNIPZ + CoD] q (2.27)

Detritus:

SD = [mP P + γDIPZ − CoD + mZZ] q (2.28)

In these equations, G is the phytoplankton primary production rate:

G = Vm

[(
Ld

sc

)
exp

(
1− Ld

sc

)]
N

N + ks

(2.29)

with

Ld = Lsexp

(
−ηd− Ss

∫ F

d
(P + Z + D) dz

)
, (2.30)

where

Ls =

(
75
√

2π

4

)
N

(
0.5,

1

64

)
(2.31)

is the surface insolation. In addition, mP is the phytoplankton death rate:

mP = M exp
(
−(nlN)2

)
, (2.32)
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and q is the thermal limitation factor:

q = 2.5(T−15

10
). (2.33)

The source terms (2.25) - (2.28) reveal the effects on the plankton dynamics of

detritus, which gains waste matter from the plankton and is converted into available

nutrients (by unmodelled bacteria) at a constant rate. The unassimilated fraction of

zooplankton grazing is now shared between the nutrients and detritus due to the wide

range of biological phenomena which it represents. It is interesting to note the lack

of zooplankton grazing on detritus, which is known to occur at times (Paffenhöfer &

Knowles 1979). Depending upon the species composition of the Z component, N -P -Z-

D models sometimes include this interaction (Fasham et al. 1990, Popova et al. 1997),

which is neglected here for simplicity.

By far the largest difference between the two models is the formulation of photo-

synthesis, which governs the initial development of the ecosystem in these simulations

which start from spring nutrient-pool conditions, as described in section 2.5.3. Com-

paring expressions (2.23) and (2.29) we can see that the formulations differ only in the

representation of light penetration of the euphotic zone, which is very simple in the

Franks et al. (1986) model but considerably more sophisticated in the Parker (1991)

formulation.

It can be seen from equation (2.31) that the daily surface insolation Ls (in Einstein

m2day−1) is assumed to have a Gaussian variation with time, which is modelled here

by a normal distribution with mean 0.5 day and variance 1/64 day2. This value is then

adjusted so that the maximum light input is 150 Em2day−1 at noon (Parker 1986). The

light reaching any particular depth Ld is calculated by equation (2.30) according to an

exponential decay as before, but an additional light depletion is included to represent

the biological phenomenon of self-shading, whereby plankton and detrital biomass sup-

presses light penetration to regions directly beneath it. Inhibition of growth according

to the available light is then simulated in equation (2.29) using the function of Steele

(1965) with a saturation coefficient, sc, which is chosen to be 40% of the noon insolation

(Parker 1991).
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The temperature dependance of the Parker (1991) model is fairly straightforward,

and is represented by a simple factor q which multiplies all component interactions. In

this way the entire ecosystem development is promoted by warmth and suppressed in

cool regions, which has some particularly interesting implications in the present context

of a warm river inflow to a cold lake.

Although most of the model is more sophisticated than that of Franks et al. (1986),

such as the phytoplankton mortality (which now contains a nutrient dependancy), the

zooplankton grazing parameterisation is reduced to a constant rate in the Parker (1991)

model. This feature is not modified in this work as changing one component with no

physical basis could upset the model’s balance, and it is important to ensure that both

models are internally consistent.

The parameters employed in this model are all taken to be the original values of

Parker (1991), as listed in table 2.2. Although these parameters are conditioned for

a marine setting, and many of these values directly contradict the adopted values of

the Franks et al. (1986) model (table 2.1), the original formulation must be adhered to

due to a lack of the data required to calculate values which are more appropriate for

Kamloops Lake.

Since the aim of the plankton model comparison is to assess the importance of the

various improvements of the Parker (1991) model over the Franks et al. (1986) model,

it is necessary to perform test simulations in which certain components of the more

complex model are neglected. The methods of assessing each particular model feature

are described below for simulations PD, PS, and PT (see appendix A), a discussion which

also applies to simulation PTSD which has all of these modifications simultaneously.

Simulation PD has the detritus component removed altogether, so that Co is set

to 0 and all other source terms in equation (2.28) are redirected to SN . Neglecting

self-shading in simulation PS is a far simpler process, as it is accomplished by merely

setting the coefficient Ss in equation (2.30) to zero. In order to examine the effects of

temperature dependance in simulation PT, T = 20◦C is substituted into equation (2.33)

so that q becomes a constant multiplier. This particular value is chosen for comparative
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purposes, since BK state that this temperature is consistent with the assumptions made

in the formulation of the (temperature independent) Franks et al. (1986) model.

Parameter Description Value

Vm Maximum phytoplankton growth rate 2.8 day−1

sc Light saturation coefficient 60 Em2day−1

η Light extinction coefficient 0.15 m−1

Ss Self-shading coefficient 0.02 (mmol N m−3)−1 m−1

ks Nutrient uptake half-saturation constant 0.6 mmol N m−3

I Ingestion rate of zooplankton 0.2 day−1

M Maximum phytoplankton death rate 0.5 day−1

nl Phytoplankton death rate coefficient 1 (mmol N m−3)−1

γN Unassimilated Z grazing to nutrients 0.4

γD Unassimilated Z grazing to detritus 0.3

mZ Zooplankton death rate 0.1 day−1

Co Detritus to nutrient conversion rate 0.02 day−1

NL-PL-ZL-DL Initial lake values of N -P -Z-D 4-1-1-1 mmol N m−3

NR-PR-ZR-DR River boundary conditions for N -P -Z-D 4-1-1-1 mmol N m−3

Table 2.2: Parameters and conditions for the plankton model of Parker

(1991).

2.5.3 Initial and Boundary Conditions

Selecting appropriate initial and boundary conditions for the ecological model is a major

difficulty in the physical setting of a continuously-interacting river and lake. Since a

comparison is sought both between the two models in this study and between this work

and that of BK, initial conditions analogous to those of BK are adopted for both models,

as detailed in tables 2.1 and 2.2. These choices are physically justified by the spring

timing of the period of interest in this study; over winter the plankton productivity is

low in Kamloops Lake, while mortality remains proportional to population levels, so

that the low-biomass and nutrient-rich lake adopted here is in a theoretically suitable
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condition for the start of spring (St.John et al. 1976).

It is important to note that the NR-PR-ZR-DR conditions of 4-1-1-1 mmol N m−3

adopted for the Parker (1991) model are a significant departure from the 7-0.1-0.1-0.1

mmol N m−3 values of the original paper. This modification is permissible, however,

because the total Nitrogen in the system is similar; the ecosystem is held to be in a

different period of the growth cycle but generally of the same character.

Setting the riverine boundary conditions for the model is also extremely problematic,

since upstream values of each component will have a very strong influence on the near-

river lake region throughout the entire simulation. The preferred modelling approach

would be to couple a one-dimensional river version of the plankton model (on a vertical

section) to the two-dimensional lake section and use the one-dimensional results to

give the riverine plankton levels which flow into the lake model. However, testing of this

approach shows that the ecosystem models adopted here, which are conditioned for deep,

slowly-moving bodies of water in which light and nutrient availability are the dominant

limiting factors, are seriously flawed in the context of a river plankton ecosystem.

The fundamental problem with this application of these models is that river plankton

communities are often dominated by physical, rather than biotic, interactions (Reynolds

et al. 1994). For example, in a well-mixed river the phytoplankton are rapidly brought

into and out of contact with nutrient and light concentrations which are suitable for

growth, so that the individual plankton production rate is of vital importance to bulk

plankton growth (Reynolds 1994). Even if an attempt were made to apply these models

to the river ecosystem, nutrient limitation practically never occurs in rivers due to

the presence of rapid flushing rates (Soballe & Kimmel 1987) and river turbidities are

usually so high that light-extinction coefficients would have to be greatly increased by

an arbitrarily-chosen amount (Dokulil 1994).

After a coupled model solution has been ruled out, the next most reasonable approach

seems to be fixing an initial state to the river ecosystem and then imposing an arbitrary

transfer of Nitrogen between the river plankton model components in a crude attempt to

reproduce basic river ecosystem dynamics in spring. Unfortunately data from St.John
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et al. (1976) are inconclusive regarding the river ecosystem variation in spring, and it

is rather dangerous to apply vague river-plankton growth principles since it is likely

that spring productivity in the South Thompson River is strongly influenced by local

nutrient loadings and temperature and turbidity fluctuations.

After these possibilities have been ruled out, the most sensible option is to fix the

values of each inflowing plankton component to a constant value throughout the sim-

ulation. These values are chosen so that riverine component levels abide by the initial

lake scenario of high nutrient levels and small plankton populations. This choice is

partly made on the basis of evidence that biologically-available Nitrogen and Phospho-

rous were relatively constant in the South Thompson River during April 1975 (St.John

et al. 1976). In addition, Carmack & Gray (1982) and Jasper et al. (1983) found that

throughout spring the Kootenay River supplies high-nutrient and low-plankton water to

Kootenay Lake, British Columbia, which shares many physical characteristics with the

Kamloops Lake - Thompson River system. Also it is well-documented that plankton

grow much more slowly in rivers than lakes under similar nutrient-availability conditions,

an observation which is mainly due to the higher turbulence and turbidity of shallow,

rapidly-flushed rivers (Jasper et al. 1983, Soballe & Kimmel 1987, Reynolds 1994). The

basic assumption is therefore that the river plankton do not grow or deplete nutrients

significantly for 30 days after the ecosystem starts to develop in the lake. Although this

condition is clearly not totally realistic, it seems a more sensible choice than attempting

to guess the real spring variation in riverine plankton levels.
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Chapter 3

Numerical Solution

A numerical solution to the governing equations described in the previous chapter is

obtained by dividing the domain of interest with a grid and approximating the global

solution in a piecewise manner by solving discretised equations at every grid node. A

Finite Volume formulation is used to produce and solve the resulting system of equations

numerically. This chapter explains the numerical procedures which are used in each of

the models to generate flow predictions from the governing equations and boundary

conditions.

3.1 Discretisation Procedure

The partial differential equations (2.2) - (2.7) representing the velocity components,

properties of the fluid, and components of the plankton model are discretised by rep-

resenting the value of the dependent variable at a node X, ΦX , as a function of the

surrounding values:

aXΦX =
∑

nb=E,W,N,S

anbΦnb + SX (3.1)

where nb = E, W, N, S represent the surrounding nodes (as shown in figure 3.1) and Φnb

the corresponding node values. Writing equation (3.1) for every point in the domain

gives a system of linear equations which, after rearrangement, is stored in coefficient

matrix form:

ÂΦ = s (3.2)

where Â is the matrix of coefficients, Φ is the vector of node values and s represents the

right-hand side due to unsteady and source terms.
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Figure 3.1: Scalar variable Φ evaluated over chosen grid. The shaded area

represents a single control volume.

Note from figure 3.1 that subscripts e, w, n, s represent the faces of the cell in ques-

tion. In equation (3.1), SX represents the source term at point X, which contains

physical sources of Φ, SΦ, due to the surface heating and effects of interaction between

the components of a plankton model. SX also contains other terms resulting from the

discretisation, some of which are grouped under SX in order to improve the conditioning

of the system (3.2) which is to be solved numerically.

The solution procedure is applied to a staggered grid over the model lake domain

(figure 3.2), such that the velocity components are evaluated at the cell faces of the

grid used for other variables. This avoids the following problems which can arise from

evaluating the pressure and velocity components on the same grid (Patankar 1980). If

velocity and pressure are calculated at the same point in space, then any attempt find a

pressure gradient at that point will result in a formulation which is dependent only on

the pressure at neighbouring nodes. If the pressure field is oscillatory, this may result

in a misrepresentation of pressure gradient forces, since gradients are calculated from

alternate pressure values, not adjacent ones. Evaluating the velocities on a cell face
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between two pressure nodes is the best way to ensure that pressure gradients used in

the velocity equations (2.2) and (2.4) avoid these problems.

u(i-1,j)

w(i,j-1)

w(i,j+1)

w(i,j)

u(i+1,j)

u(i,j+1)

u(i,j)

u(i,j-1)

w(i-1,j) w(i+1,j)
Φ(i,j)

Figure 3.2: Velocity components corresponding to backward-staggered grid

The coefficients anb, aX in (3.1) represent the weighting of the effect of Φnb values at

neighbouring nodes on ΦX , the value of Φ at the node of interest. These coefficients are

calculated by integration of the original differential equations over the control volumes

defined by the given mesh (figure 3.1). Applying Gauss’ Theorem, volume integrals of

each governing equation are expressed as surface integrals over the four faces of each

cell.

A generic unsteady advection-diffusion equation for Φ under the Boussinesq (1903)

approximation may be written

∂Φ

∂t︸︷︷︸
Unsteady

+ ∇. (uΦ)︸ ︷︷ ︸
Convection

= ∇. (K∇Φ)︸ ︷︷ ︸
Diffusion

+ SΦ︸︷︷︸
Source

(3.3)

and it is easy to observe that the governing equations (2.2) - (2.7) and (2.17) are all of

this form. Since the convection term is only included in the two-dimensional modelling
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here, the discretisation of this equation will be presented term by term.

Unsteady and Source terms:

Considering Φ constant over each control volume of integration, VΦ, we integrate to

find
∫

VΦ

∂Φ

∂t
dVΦ =

(
Φn+1(i, j)− Φn(i, j)

∆t

)
hxhz (3.4)

where Φn is the value of Φ at time t and Φn+1 refers to Φ at time t + ∆t. It is therefore

chosen that the unsteady term be discretised using a first-order forward-differencing

scheme. The source term is simply integrated to find that

∫

VΦ

SΦ dVΦ = SΦhxhz. (3.5)

Diffusion terms:

The volume integral of the diffusive term in each direction is split into surface inte-

grals over the faces of a control volume, for example the diffusion term in the x-direction

becomes
∫

V Φ

∂

∂x

(
Kh

∂Φ

∂x

)
dVΦ = (Kh)e

(
∂Φ

∂x

)

e

hz − (Kh)w

(
∂Φ

∂x

)

w

hz (3.6)

which is

(
Kh(i + 1, j) + Kh(i, j)

2

)(
Φn+1(i + 1, j)− Φn+1(i, j)

hx

)
hz

−
(

Kh(i, j) + Kh(i− 1, j)

2

)(
Φn+1(i, j)− Φn+1(i− 1, j)

hx

)
hz (3.7)

after discretisation. It is assumed here and in the convection discretisation that flux

terms for Φ are evaluated at time t + ∆t, yielding a fully-implicit scheme.

Convection terms:

Representation of the convective terms requires a more sophisticated approach. Us-

ing the x-direction as an example again, a standard volume integral yields

∫

V Φ

∂(uΦ)

∂x
dVΦ = (uΦ)ehz − (uΦ)whz. (3.8)

The use of a staggered grid means that ue and uw are known quantities, so the dis-

cretisation of convective terms becomes a matter of calculating cell face values Φe and

Φw.
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The initial approach here is the use of the first-order Upwind technique, which sim-

ply approximates the convected property value on a cell face to be that of the node

immediately upstream. The upstream node is selected by the sign of the convecting

velocity on the cell face in question, so that

Φw =





ΦW uw > 0

ΦX uw < 0
, Φe =





ΦX ue > 0

ΦE ue < 0
. (3.9)

The use of Upwind differencing has the favourable effect of stabilising convergence of

the iterative solvers used here, but unfortunately this is due to the introduction of ‘false’

numerical diffusion by this technique (Patankar 1980). The Upwind method is therefore

only suitable for use unmodified when the model diffusion coefficients are significantly

larger than the added numerical diffusion.

When convection is not too much stronger than diffusion, as determined by the

cell Peclet number (Pe), Central Differencing of the convection terms gives a better

representation than Upwind Differencing due to the removal of the numerical diffusion

associated with the Upwind approach. A classical approach to the discretisation of

convective terms is therefore to adopt a ‘conditional’ scheme (e.g Hybrid, Power-Law,

etc.) whereby Upwind Differencing is employed for Pe > 2 (dominant convection) and

Central Differencing is adopted otherwise. However, Leonard & Drummond (1995) have

shown that these schemes are seldom more economical than some higher-order schemes,

which have a greater accuracy. Central Differencing is therefore not considered in this

study.

One such higher-order scheme is the QUICK (Quadratic Upstream Interpolation for

Convective Kinematics) scheme of Leonard (1979). In this method, the value of the

variable on a cell face is calculated using a three-point quadratic interpolation, where

the two upstream and one downstream nodes used for the interpolation are chosen

depending upon the direction of the convecting velocity on the cell face.

Figure 3.3 shows the generalised node notation surrounding a cell face f which will

be used hereafter to describe the QUICK method. The value on the cell face (Φf ) is

calculated as a linear interpolation of the two nodes surrounding it in the direction

orthogonal to the cell face (ΦC and ΦD), plus correction terms proportional to the
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curvature of the quadratic interpolation at the immediately upstream node (ΦC), so

that in two dimensions

Φf =
1

2
(ΦC + ΦD)− h2

x

8

(
∂2Φ

∂x2

)

C

+
h2

z

24

(
∂2Φ

∂z2

)

C

. (3.10)

The full derivation of this formula may be found in Leonard (1979).

Φ

x

Φ
Φ

Φ

Φ

fU C D

uf

U
C

f

D

Figure 3.3: Node notation for theory of QUICK differencing.

While numerical viscosity from Upwind differencing makes the coefficient matrix

better-conditioned for inversion, the coefficients which result from the use of (3.10) may

become negative, with drastic consequences for the stability of the solution procedure.

In order to maintain the matrix-conditioning benefits of Upwind differencing but gain

the higher accuracy of QUICK, a deferred correction procedure is used whereby the

cell-face value of Φ, used to calculate the coefficients from equation (3.8), is written in

terms of the Upwind value plus a correction:

Φf = (Φf )Upwind
+
[
(Φf )QUICK

− (Φf )Upwind

]
. (3.11)

The correction term is then included in the source term so that the coefficient matrix

is identical to that of the Upwind approach. As the converged solution is reached for

each time-step, the first-order contributions cancel and the solution is consistent with

the QUICK scheme everywhere.
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Another problem with higher-order convection schemes is the possibility of unphys-

ical overshooting, whereby a cell-face value of Φ is found to be outside the range of the

two adjacent nodes, i.e. Φf /∈ [ΦC , ΦD]. This phenomenon may lead to non-linear insta-

bility, for example if a computed turbulence quantity becomes negative as a result of an

oscillation in temperature or salinity fields, and a negative calculation of eddy-viscosity

is the result. A convection boundedness criterion, based upon physical assumptions, is

used in the model and briefly defined here. This flux-limiter is based upon the technique

of Gaskell & Lau (1988), in the normalised-variable formulation of Leonard & Mokhtari

(1990), of which a thorough description is given in Botte (1999). The logic is as follows:

• in locally monotonic regions, i.e. where ΦC ∈ [ΦU , ΦD], the value on the cell face

should lie between the value of adjacent nodes, i.e. Φf ∈ [ΦC , ΦD].

• if ΦC /∈ [ΦU , ΦD] then there is no information to limit the interpolated value Φf

and the (always bounded) Upwind scheme is used.

In section 3.4, the effectiveness of Upwind and QUICK convection schemes are stud-

ied on the Lake Baikal and Kamloops Lake simulations. It is found that the QUICK

scheme produces few appreciable benefits fo the Kamloops Lake solution, and the Up-

wind scheme is used there in its most basic form. However, applying QUICK differ-

encing to the Lake Baikal simulation produces significant improvements to the velocity

solution, so the QUICK scheme is employed in the deep-lake simulations. Since more

accurate methods require increased computational effort for relatively small accuracy

gains, QUICK is the most sophisticated convection scheme considered here.

3.2 Solution Procedure

Two-dimensional model:

Writing equation (3.1) for every grid point in the domain gives a linear system of

n = nx×nz equations in n unknown variables. The coefficient matrix of these systems is

symmetric in shape but not in values, and it is not positive definite (BK). Each equation

for a node is written in terms of no more than 4 other nodes (since the deferred QUICK

correction, which involves other nodes in the second derivatives, appears in the source
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term), so the coefficient matrix for the rectangular box geometry has a pentadiagonal

structure with aX coefficients in the leading diagonal (figure 3.4(a)).

The coefficient matrix for the irregular geometry of the plankton studies has a slightly

more complex structure, as the cells are not in even rows and columns. The three leading

diagonals are the same as before but coefficients aE and aW are no longer at the same

distance from aX for every cell in the domain, as this distance is dependent upon the

total number of cells in the column of interest.
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Figure 3.4: Form of the coefficient matrices to be solved, (a) pentadiago-

nal matrix from two-dimensional problem, (b) tridiagonal matrix

from one-dimensional problem.

Given a correct pressure field, the discretised versions of the momentum equations

(2.2) and (2.4) will predict a velocity field which satisfies continuity. However, the

pressure field needs to be calculated from the velocities as part of the solution procedure,

and therefore a method of linking pressure and velocity is required. In this study, an

unsteady pressure correction procedure similar to the steady SIMPLE (Semi-Implicit

Method for Pressure-Linked Equations) method of Patankar & Spalding (1972) is used

to refine the calculated velocity field to one satisfying the continuity equation (2.1).

59



Briefly, the SIMPLE method is a guess-and-correct procedure which regards the

correct pressure p as the sum of a guessed pressure p∗ and a pressure correction p′:

p = p∗ + p′. (3.12)

Then, given p∗ (which in this case corresponds to the pressure from the previous iter-

ation), we require a routine for calculating the pressure correction p′ and formulae for

finding the associated velocity corrections.

To illustrate the calculation of p′ let us consider ue, the horizontal velocity evaluated

on an eastern cell-face. Discretisation of the momentum equation (2.2) gives

aeue =
∑

nb

anbunb + Se + (PX − PE)hz (3.13)

where Se is the source term Se minus the pressure gradient forcing on face e, which is

explicitly included above. If we consider the desired horizontal velocity u to be com-

prised of an imperfect velocity (calculated with the guessed pressure field, and therefore

corresponding to the previous time-step in this study) plus a correction

u = u∗ + u′, (3.14)

then we may also obtain a discretisation for u∗

e:

aeu
∗

e =
∑

nb

anbu
∗

nb + Se + (P ∗

X − P ∗

E)hz. (3.15)

Subtracting equation (3.15) from equation (3.13), we have

aeu
′

e =
∑

nb

anbu
′

nb + (P ′

X − P ′

E)hz. (3.16)

To proceed from this point to a velocity-correction formula, we must drop from this

equation the term containing the summation of contributions from neighbouring nodes.

This bold step is justified in that if we retained these terms we would end up with a

velocity correction equation for ue involving velocities and pressure corrections at every

other point in the domain1. A thorough discussion of the consequences is given by

Patankar (1980), and omitted here.

1This results in the name of the SIMPLE procedure; by neglecting these terms we lose the implicit

influence of the pressure correction from neighbouring nodes but retain the implicit influence of the

pressure correction on velocity at the node in question.
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Utilising equation (3.14) we then arrive at a formula giving the required velocity

correction from the pressure correction:

ue = u∗

e +
hz

ae

(P ′

X − P ′

E), (3.17)

and a similar equation may be written for the vertical direction.

An equation for the pressure correction is found by integrating the continuity equa-

tion (2.1) over a control volume as before:

∫

VΦ

∂u

∂x
+

∂w

∂z
dVΦ = (ue − uw)hz + (wn − ws)hx = 0. (3.18)

After substitution of cell-face velocity relations similar to (3.17) and appropriate group-

ing of known quantities into coefficients and a source term SP ′ , this yields the pressure-

correction equation:

aXP ′

X =
∑

nb

anbP
′

nb + SP ′ (3.19)

where coefficients ai are all known quantities.

Now that we have a pressure correction equation and associated velocity-correction

formulae, a procedure for calculating u and w velocities in one time-step can be con-

structed as follows:

1. Set the initial pressure field p∗ to p from the previous time-step.

2. Calculate T, S and ρ using velocities from the previous time-step.

3. Using p∗, calculate u∗ and w∗ from the discretised versions of the momentum

equations (2.2) and (2.4).

4. Solve the pressure correction equation (3.19).

5. Calculate p from equation (3.12).

6. Correct velocities using equations similar to (3.17).

While the steady SIMPLE procedure iterates the above steps towards a converged

solution, in this unsteady case the time step is kept small enough for the pressure p∗ from

the previous time step to be close enough to the new correct pressure field p for a good
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solution to be obtained from just one application of steps 1-5. In this way the procedure

converges over the time-steps so that the pressure correction equation becomes easier to

solve as the simulation proceeds.

In the absence of any other information, the pressure is supposed correct in the

bottom left-hand corner of the domain (i.e. p′ = 0 at i = 1, j = 1) to fix the pressure

correction routine to absolute rather than relative calculations of the pressure field.

This avoids the numerical difficulties associated with the singular coefficient matrix

which results from the use of Neumann boundary conditions everywhere.

One-dimensional model:

The one-dimensional models which are used to evaluate the initial and riverine con-

ditions are much simpler to manage numerically. Since each node has at most two

neighbours, the coefficient matrix has a tridiagonal structure (figure 3.4(b)), represent-

ing a system of nz equations in nz unknown quantities, where nz is the depth in cells

of the river or lake under consideration. Since the fluid is considered to be motionless

in the one-dimensional models, complex pressure correction routines are not necessary.

Instead pressure is simply evaluated from hydrostatic equilibrium (2.15) for use in the

calculations of Brünt-Väisälä frequency.

3.3 Numerical Techniques for Linear Systems

General two-dimensional case:

For every variable apart from the pressure correction, a sparse systems iterative

solver is used to invert the matrices of coefficents which arise from the discretisation

process. Due to the characteristics of these matrices the GMRES (Generalised Minimum

Residual) acceleration procedure of Saad & Schoults (1986) is used as the appropriate

variant of the Conjugate Gradient (CG) method. Conjugate Gradient methods use the

residual of a system after each iteration to decide how to maximise convergence in the

next iteration. Adopting the notation of equation (3.2), if we represent the system to

be solved iteratively for x as:

Âx = s, (3.20)
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then the residual corresponding to an intermediate solution y is given by:

Res(y) = Ây − s. (3.21)

The Conjugate Gradient method proceeds by generating vector sequences of iterates2,

residuals corresponding to the iterates, and search directions to optimise the updating of

the iterates so as to minimise the residual corresponding to the following iterate (Oppe

et al. 1988). We consider the solution converged when Res(y) is sufficiently small to

give the required error tolerance for the whole system.

GMRES is the CG variant used for nonsymmetric linear systems, and generally

uses a modified Gram-Schmidt procedure to form the orthogonal vectors. The main

problem with this procedure is that it requires storage of the whole sequence of vectors

(unlike CG), but this difficulty can be overcome by restarting the iteration every so

often (Barrett et al. 1994). However, the memory requirements were satisfied in this

study so restarting was not used in order to preserve the speed of convergence.

Preconditioning the matrix can sometimes help to improve the speed of convergence

or accuracy of the iterative process by favourably transforming its shape and thus its

spectral properties. Jacobi preconditioning, incomplete Cholesky factorisation, incom-

plete LU factorisation, truncated Neumann and least squares polynomial expansions

have all been tested and found to be uneconomical in this case, so the null precondi-

tioner was adopted.

Pressure-correction case:

When solving the system representing the pressure correction, GMRES converges

extremely slowly due to the ill-conditioning of the matrix (Botte et al. 1996). Since the

accuracy of solution for the pressure correction must be very good to provide a realistic

flow-field with one implementation of the SIMPLE procedure per time-step, the total

solution time would be prohibitive even if GMRES ever attained the required accuracy.

The performance of several other acceleration routines was tested against GMRES

but unfortunately little improvement in convergence time is possible. Testing with

2These vectors are conjugate (or orthogonal), hence the name of CG methods.
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the preconditioners mentioned previously also failed to solve this problem, so a direct

solver had to be employed for the pressure correction case only. This decision was

taken reluctantly as the extra memory requirement of a direct solver drastically reduces

the maximum number of gridpoints which can be solved in a reasonable time, and

therefore decreases the maximum resolution and domain size of the model. Direct

methods are generally very slow but in this case total solution times are an improvement

over GMRES.

The use of a direct solver for the pressure correction solves all of the numerical

problems as it gives the most accurate solution possible, at machine levels of error,

and has no problem with the conditioning of the matrix in question. The amount of

fill-in during factorisation is reduced by pre-processing the coefficient matrix with a re-

ordering heuristic based on the multiple degree algorithm of Liu (1985). The symmetric

pattern of the matrix is utilised by setting the solver to favour diagonal pivoting during

the factorisation.

The factorisation process continues by finding a sparsity-preserving and numerically

acceptable pivot order and computing the L̂Û factors such that P̂ ÂQ̂ = L̂Û , where

P̂ and Q̂ represent the pivot order. The chosen solver uses the multifrontal method

(Liu 1992), which factorises the matrix using a series of small dense frontal matrices,

which are not limited to square matrices in the unsymmetric case. The system is then

solved using update matrices to carry the intermediate results from the variables being

eliminated to the variables which are not yet processed. Assembly of update matrices

(corresponding to variables eliminated previously) to form the current frontal matrix

may have to occur before the elimination of a variable. The frontal matrix is then

partially factorised, and the new update matrix is formed.

One-dimensional case:

The tridiagonal coefficient matrices of the one-dimensional models are much simpler

to solve. The TDMA (Tri-Diagonal Matrix Algorithm) procedure of Thomas (1949) was

employed for the inversion of these coefficient matrices. The TDMA is a very simple

direct method which uses a process of forward elimination to link each variable to the

next, and then back-substitution to explicitly determine each node value.
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We may write a general equation for the jth node value of a variable Φ in a one-

dimensional system, Φj, as dependent only upon its two neighbours:

ajXΦj = ajSΦj−1 + ajNΦj+1 + sj for j = 1 . . . nz (3.22)

subject to the boundary conditions

Φ1 = Φbottom (3.23)

Φnz
= Φtop. (3.24)

When compared to equation (3.22), condition (3.23) implies that Φ2 is only dependent

upon Φ3 (since Φ1 is known), which is therefore only dependent upon Φ4, and so on.

Using forward-elimination we can obtain a set of equations where the jth variable is

written solely in terms of the (j + 1)th:

Φj = QjΦj+1 + Sj. (3.25)

Then, since we know the nzth variable explicitly (3.24), we can use a process of back-

substitution on equation (3.25) to explicitly determine all values of Φ.

3.4 Balance of Convection and Diffusion

In this section the balance of convective and diffusive terms in the governing equations

(2.2) - (2.7) is studied in each of the two models included in this work. Knowledge of

the relative importance of convection and diffusion is crucial to the choice of convection

scheme (section 3.1) and the sophistication of the turbulence parameterisation (chapter

4), and is therefore a subject which is correctly placed in this chapter as it is strongly

associated with numerical modelling.

This section shows that convection and diffusion are of evenly-balanced importance

in both the Lake Baikal and Kamloops Lake simulations. However, horizontal diffusion

is more erratic inshore of the thermal bar in the Lake Baikal scenario, which allows

convection to play a slightly more influential role than in Kamloops Lake.

This difference leads to the adoption of different convection schemes in the two

models: QUICK for Lake Baikal and Upwind for Kamloops Lake. The influence of
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each of these schemes is tested in this section by introducing two new simulations for

comparative purposes. T9 is compared to T9UP, which has Upwind differencing, and K

is compared to KQ, which uses QUICK. Comparisons of horizontal velocity predictions

with and without the QUICK scheme are shown in a typical sample of each case to

justify the final model choice.

3.4.1 Lake Baikal

Figure 3.5(a) shows horizontal profiles of convective and diffusive transport of the river-

ine tracer in simulation T9 at a depth of 25 m, corresponding to half of the inflow depth.

A positive value of either transfer mechanism indicates that it is increasing the tracer

concentration at the position in question, while a negative value reveals that the in-situ

tracer concentration is being depleted. The plot also contains indicators marking the

horizontal positions of both the T = Tmd contour and the horizontal stagnation point

(u = 0) at this depth.

Convection and diffusion terms are generally of a similar magnitude here, although

horizontal convection seems to considerably outweigh diffusion inshore of the horizon-

tal stagnation point, where both mechanisms hold a positive value and are therefore

increasing local tracer levels. Comparing the convective term profile to this stagnation

point shows that tracer concentrations inshore of the thermal bar plume are increasing

due to in-situ advection of river water from the inflow, while offshore flows deplete local

concentrations by advecting tracer-free water from the open lake.

While diffusion neatly balances convection offshore of the Tmd, providing little net

concentration change in front of the advancing thermal bar, the fluctuating nature of

diffusion inshore of the Tmd leads to a dominance of convection there. The rapid local

variation in diffusion is caused by a fluctuating gradient in the horizontal tracer profile

in this region (figure 3.5(b)), which in turn is caused by the oscillatory nature of vertical

flows at this depth, as shown in figure 6.1. These vertical flows advect tracer preferen-

tially into certain regions, causing diffusion to act erratically as it attempts to smooth

the tracer profile.
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terms in simulation T9, (b) tracer concentration in simulation
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The fine balance of convection and diffusion in front of the thermal bar is responsible

for the significant differences between simulations T9 and T9UP which are noted in

figure 3.5(c). Using Upwind differencing instead of QUICK increases the numerical
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diffusion of heat in this region, shifting the transport balance towards positive change,

which leads to increased heat transfer and therefore a quickened propagation of the

thermal bar. This explains why the horizontal stagnation point in case T9UP is furthest

from the river inflow after 2 days.

3.4.2 Kamloops Lake

Figure 3.6(a) shows that the balance between convection and diffusion is different in the

Kamloops Lake simulation KQ, which is studied here to enable a comparison between the

two different lake simulations. A different distribution of riverine tracer near the inflow

gives a much smoother diffusion profile, which now acts in opposition to convection

everywhere and is significantly stronger than convection offshore of the Tmd.

The diffusion profile of simulation KQ is much less variable than that of T9 because

the tracer profile follows a steady transition from increasing to decreasing curvature away

from the river inflow (figure 3.6(b)). In addition, diffusion opposes convection inshore

of the horizontal stagnation point because the horizontal gradient of tracer grows in

magnitude away from the inflow instead of shrinking as it does in simulation T9, a

consequence of the ‘flatter’ tracer distribution in the near-shore region (compare figures

3.5(b) and 3.6(b)).

The weaker convection and smoother (and more dominant) diffusion of simulation

KQ shows that the benefits to be gained from more sophisticated convection schemes

are severely limited in the Kamloops Lake scenario (figure 3.6(c)). As the modelled

diffusion of heat away from the river inflow is clearly responsible for the propagation of

the thermal bar in simulation KQ, it can be seen that the QUICK scheme’s removal of

a small amount of numerical diffusion only slows the propagation of the thermal bar by

a tiny amount. The simpler and more economical Upwind scheme is therefore adopted

in the Kamloops Lake simulation.

68



-5  10

 0.0

-6

5  10 -6

-2.5  10 -6

2.5  10-6
diffusion

convection

-1

Distance from inflow (km) 

-0.01

 0.0

 0.01

u (ms  )

QUICK

Upwind

-1

term (s  )

(a)

(c)

u=0Tmd

0

 0.5

1(b) j

4 3 2 1 0

Figure 3.6: Horizontal profiles at 7.5 m depth after 12 days of simulation: (a)

horizontal tracer convection (−u ∂ϕ

∂x
) and diffusion ( ∂

∂x

(
Kh

∂ϕ

∂x

)
)

terms in simulation KQ, (b) tracer concentration in simulation

KQ, (c) horizontal velocity in simulations K and KQ.

69



Chapter 4

Modelling of Turbulence

This chapter is intended to describe the chosen representation of subgrid turbulent flow

and to provide a short introduction to some of the theoretical background underpinning

turbulence modelling in limnology. Although the approach used here is not the most

sophisticated available, it is shown empirically that the most appropriate formulation is

adopted.

In contrast to laminar motion, turbulent flow is characterised by a swirling, tortuous

fluid motion in which any chosen particle seems to take a random path. Important

characteristics of turbulence are the irregular velocity fluctuations at any given point in

space and the great variation in the scale of the motions involved. In a fully-developed

turbulent flow motion on all scales is present, from the largest on the scale of the

flow region to the smallest scale of motion allowed by dissipative processes (Landahl &

Mollo-Christenson 1986). For low-viscosity fluids like water the vast majority of real

environmental fluid flows are turbulent in nature.

In order to visualise a turbulent flow with a full spectrum of scales, the concept of a

turbulent eddy is often introduced. A turbulent eddy is a local swirling motion whose

characteristic length scale is the local turbulence scale, and these eddies overlap in space

such that the smaller ones are superimposed on the larger (Wilcox 1993).

A statistical approach to turbulence modelling is adopted here whereby fluctuating

quantities are averaged and the net properties of the motion examined. Of particular

interest is the transport of fluid properties across the flow direction, since these fluctu-

ations and eddies provide a very efficient means of dispersion. Indeed, it will be shown
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in the rest of this chapter that when viewed over a ‘large’ time-scale compared to that

of the eddying (here assumed to be one model time-step), the net effect of turbulence

is an increase in the diffusion of fluid properties.

4.1 The Eddy-Viscosity

A time-averaging process is applied to the Navier-Stokes equations in order to obtain

the laws of motion for ‘mean’ turbulent properties of the flow. A differential form of

the equation of motion for an incompressible fluid may be obtained by integrating the

momentum conservation equation over a surface and applying Gauss’ theorem (Hirsch

1988):

ρ
∂u

∂t
+ ∇.(ρu⊗ u + pÎ − τ̂ ) = F (4.1)

where F represents external forcing and Î is the unit tensor. τ̂ is the viscous shear

stress tensor, which is the product of the mean strain-rate tensor and an eddy-viscosity,

µV , which represents the molecular diffusion rate of momentum:

τij = µV

[(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
(∇.u)δij

]
for i = 1, 2, 3. (4.2)

In order to derive the equivalent governing equations for mean turbulent quantities,

a time-averaging process is introduced so that any scalar Φ is represented as

Φ = Φ + Φ′ (4.3)

where Φ is the mean value of Φ over time ∆t and Φ′ represents the fluctuation from

this mean. Applying this process to the equation of motion (4.1) we arrive at the

Reynolds-averaged incompressible Navier-Stokes equations:

ρ
∂u

∂t
+ ∇.

(
ρu⊗ u + pÎ − τ̂

V − τ̂
R
)

= F (4.4)

where τ̂
V is the averaged version of the viscous shear stress tensor given in (4.2). The

only new term generated by this averaging process is therefore τ̂
R, the Reynolds stress

tensor, which has components given by:

τR
ij = −ρui

′uj
′ (4.5)
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Thus we can conclude that the only effect of averaging the Navier-Stokes equations

over time is an extra shear stress term due to the fluctuations of the turbulent velocity.

Unfortunately the problem is no longer closed as the symmetric tensor τ̂
R introduces

6 new independent scalar unknowns, so that the use of these time-averaged equations

requires a model for the new terms. From now on all overbars are omitted, and all

quantities are regarded as averaged over the time-step ∆t.

The simplest of all turbulence models are known as algebraic models, since they

employ simple algebraic representations of relevant physics to calculate the components

of the Reynolds stress tensor. In section 4.5 some results are presented which rule out the

use of more sophisticated turbulence closure models (which introduce extra differential

equations to tie up these remaining unknown quantities) for the purposes of this study.

Boussinesq (1877) used an analogy between molecular mixing, governed by (4.1), and

turbulent mixing, governed in averaged form by (4.4), to propose that the Reynolds

stress tensor be expressed in a similar way to the viscous shear stress tensor (4.2). Thus

we write τ̂
R as the product of a general eddy viscosity, µR, and the mean strain-rate

tensor. Grouping τ̂
V and τ̂

R into one term, the final eddy-viscosity becomes

µ = µV + µR. (4.6)

This implies that the sole effect of turbulence when averaged over a discrete time-step

is equivalent to an increase of diffusion in the property of interest.

Some commonly-used turbulence models in computational fluid dynamics, such as

the k-ε formulation, link eddy viscosities to gradients of velocity in each coordinate

direction. However, on a grid-scale which is large compared to turbulent eddies, such as

ours, a constant value or simple formulation for the eddy viscosity based on gradients

of temperature or density is sufficient.

Note that in this study turbulent diffusion of momentum and scalar fluid properties

are assumed to be the same, equivalent to setting Ah = Kh and Av = Kv, which seems

to give good results in large-scale lacustrine modelling, e.g Jones & Marshall (1993),

Walker & Watts (1995). This is justified as turbulent mixing is much more important

than molecular diffusion (µR � µV ) on the grid scales used here.
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4.2 The Horizontal Eddy Viscosity

In practice the eddy viscosities are multipurpose in a numerical model, as they are used

partly as a tool to smooth spurious noise in the model solution which is known to result

from the use of coarse grids (Blackman & Tukey 1959). The choice of eddy viscosities is

thus determined by a balance between modelling the turbulent diffusion as accurately

as possible and providing a stable solution to the governing equations. Horizontal eddy

viscosities are simply assumed to take a constant value here, which is usually the case in

large-scale modelling of this nature. The precise values of Ah = 5 m2s−1 and 2.5 m2s−1

for Lake Baikal and Kamloops Lake respectively were chosen by numerical testing, as

they are the smallest values which allow a stable solution to the governing equations

with a reasonable time-step. This is well within the range of expected values, as typical

inferred values for Ah in lakes have been found to be of order 0.1 to 10 m2s−1 (Hamblin

1971, Cheng et al. 1976), although larger values have been used in similar models in the

literature.

The problems associated with spurious solution noise and the effects of increasing

Ah are illustrated in figure 4.1, where results are compared from simulations T9A2.5,

T9, and T9A7.5, which are variants of the Lake Baikal simulation T9 with Ah = 2.5,

5, and 7.5 m2s−1 respectively. Using an eddy viscosity which is too low results in an

unpredictable flow-field containing many areas of spurious vertical motion (figure 4.1(a)).

These plumes arise when small oscillations in the velocity solution grow through the

localised buoyancy forcing which results from a small vertical transport of heat.

Increasing the eddy viscosity damps these initial motions and thus suppresses their

heat transfer, preventing the growth of small errors and allowing the large-scale dynamics

to dominate (figure 4.1(b)). Raising Ah farther than is strictly necessary to provide a

stable solution results in a similar circulation but it can be seen that the smoothing effect

weakens horizontal gradients and results in a wider and slightly weaker downwelling

(figure 4.1(c)). The best choice therefore appears to be Ah = 5 m2s−1, which gives a

stable solution with the minimum possible damping of the flow-field.
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Figure 4.1: Velocity vectors and T = Tmd line for several cases of simulation

T9 after 2 days illustrating the effect of varying Ah: (a) T9A2.5,

(b) T9, (c) T9A7.5.
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after 2 days illustrating the effect of varying Ah: (a) T9A2.5, (b)

T9, (c) T9A7.5.

A horizontal profile of vertical velocity in case T9A2.5 (figure 4.2(a)) clearly shows

the spurious oscillations in the solution and also illustrates the sharp spatial variation

in vertical velocity which results from the reduced diffusive transfer of information be-

tween adjacent grid nodes. While it is impossible to definitively state that this erratic

velocity profile is incorrect, the presence of seemingly random fluctuations in the flow

field certainly brings the use of this Ah value into question. In contrast, a profile from

simulation T9 (figure 4.2(b)) show a smoothly-varying profile with few oscillations and

a Gaussian velocity profile within the thermal bar plume. Increasing the horizontal eddy
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viscosity in case T9A7.5 is again seen to weaken the horizontal gradients governing the

thermal bar plume, resulting in a slower descending flow spread over a wider area (figure

4.2(b)).

Vertical eddy viscosities are known to be much smaller and more variable, as they

are controlled by several physical mechanisms which must be accurately modelled before

realistic vertical temperature profiles can be achieved. The vertical eddy viscosity is

therefore allowed to vary in space, as described in the next section.

4.3 Parameterisation of Vertical Mixing in Lakes

Due to the simplicity underlying the whole eddy-viscosity approach, only a basic formu-

lation of the relevant processes is required to produce values of Av such that the mixing

in the model generates a reasonable thermal profile. On the scale of importance here,

the first step is to quantify the reduction of vertical mixing caused by the presence of

stable stratification in a lake.

If a body of fluid is stably stratified (i.e. density increases with depth) then vertical

motion is suppressed, since any parcel of fluid within that system will feel a restor-

ing buoyancy force if perturbed vertically from its initial position. The vertical eddy-

viscosity should therefore be sensitive to stable stratification, as it will limit small-scale

vertical motions. The Brunt-Väisälä frequency, N , is a very useful parameter in quan-

tifying the existence and strength of stable stratification.

The following formulation for N 2, the stability, is used in the model (Imboden &

Wüest 1995):

N2 = g

[
α

(
∂T

∂z
− Γ

)
− β

∂S

∂z

]
(4.7)

where α and β are the coefficients of thermal expansion and haline contraction of water,

given by:

α = −1

ρ

(
∂ρ

∂T

)

p,S

(4.8)

β =
1

ρ

(
∂ρ

∂S

)

p,T

(4.9)
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and Γ is the the adiabatic temperature gradient, defined as:

Γ = −gα

cp

(T + 273.15). (4.10)

Here the vertical density gradient has been formulated in terms of salinity and temper-

ature gradients, as detailed by Gill (1982). The inclusion of saline effects on the Tmd

and density in general then avoids any misrepresentation of stability when temperature

gradients are close to the adiabatic rate, a hazard which was highlighted by Chen &

Millero (1977).

N is essentially the frequency of internal waves in a fluid, which is real only in stable

situations and increases with stronger stratification. If ∂ρ
∂z

< 0 (stable stratification)

then oscillatory behaviour is permitted whereby small vertical perturbations generate

wavelike motion and vertical mixing is suppressed. If ∂ρ
∂z

> 0 (unstable stratification)

then small perturbations will grow exponentially with time and vertical convection is

initiated. Thus, since N 2 ∝ −∂ρ
∂z

, we obtain a stability criterion:

N2 > 0 ⇒ stable stratification

N2 < 0 ⇒ unstable stratification

Despite the effects of density stratification, the presence of shear flow with strong

vertical gradients of horizontal velocity can induce vertical turbulent mixing even in

a strongly stratified layer. Some consideration of the vertical gradient of velocity is

therefore desirable when expressing the vertical eddy viscosity. Following the discussion

of Wetzel (1983), formation of the Kelvin-Helmholtz instability in a two-layer stratified

fluid with shear in the flow parallel to the interface is now considered, as shown in figure

4.3.

At low velocities the flow is laminar and little mixing takes place between the two

layers. However as shear increases, any perturbations on the density interface will

overcome buoyancy forces and grow in amplitude, eventually breaking into vortices and

mixing the two layers together thoroughly as the flow becomes fully turbulent. Thus

vertical mixing can be generated by this Kelvin-Helmholtz mechanism whereby there is

stability up to a critical shear rate (for a given density gradient) and instability beyond

it (Mortimer 1974). This effect is quantified by the gradient Richardson number (Smith
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1975):

Ri =
N2

(
∂u
∂z

)2
+
(

∂v
∂z

)2 (4.11)

which hereafter will simply be referred to as the Richardson number.

Figure 4.3: Increasing the strength of shear over a stable density interface in

a 2-layer system. Eventually buoyancy forces are overcome and

vertical mixing is induced with the onset of the Kelvin-Helmholtz

instability. (after Mortimer (1974))

From the ratio of stability suppression to shear generation of turbulence (4.11) it is

possible to deduce that the onset of turbulent vertical mixing is energetically possible

once the Richardson number becomes less than 1. However in reality dynamical effects

require that Ri be considerably less than unity for small perturbations to grow into

turbulent vortices which persist against the density gradient in a stably-stratified shear

flow. Miles (1961) and Howard (1961) both proved that the Kelvin-Helmholtz instability

is not possible for Ri > 0.25 and the fluid is then stable as before.
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4.4 Models of Vertical Eddy Viscosity

Algebraic models of these processes have been in use for some time, of which a good

discussion may be found in Henderson-Sellers (1984). Generally the eddy viscosity for

unstable conditions is nominated a constant value, and then a formulation for mixing

in stable regions using N 2 or Ri is attached for evaluation in the relevant areas of the

domain. A comparison of models with and without a representation of shear effects

is outlined below, and a formulation is chosen after a discussion of results from a test

simulation.

Vertical derivatives of temperature evaluated in the hypolimnion are often seen to

be very small, and this is liable to give rather small values of N 2 when stable. This

produces large values of eddy viscosity under most models (as usually A−1
v ∝ N2) in

a region where the effects of turbulent mixing should theoretically be smallest. The

solution procedure adopted also seems to respond to these high values of viscosity by

producing anomalous flows around the model bottom. These problems are avoided by

choosing a ‘cut-off’ depth, d̄, near to the lake bed and decreasing the eddy viscosity for

d > d̄ exponentially from the value at this depth, Av


d̄
, towards the reference molecular

viscosity νref = 10−6 m2s−1. A nominal extinction coefficient for this decay is chosen to

be -0.025 m−1, although numerical testing shows that the exact value makes very little

difference to the final predicted distributions of scalar quantities. Note also that as long

as d̄ is far enough below the thermocline, results are not greatly affected by its exact

depth and thus it is chosen to be the deepest value which suppresses the spurious flows

at the bottom of the domain.

Model 1 : A commonly-used formulation for Av in a stably-stratified fluid which

includes representation of all these effects through the Richardson number is given by

Pacanowsky & Philander (1981):

Av = νb +
ν0

(1 + rRi)s
(4.12)

where νb is the background viscosity for stable conditions, ν0 is the viscosity for unstable
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conditions, and r and s are constants. The model for vertical eddy-viscosity is:

Av =









ν0 Ri ≤ 0

νb + ν0

(1+rRi)s Ri > 0
d ≤ d̄

νref + Av


d̄
exp[−0.025(d− d̄)] d > d̄

(4.13)

Model 2 For comparative purposes an alternative formulation, adapted from the

relation of Welander (1968), is tested here. As before the viscosity for unstable conditions

is given as a constant, but here the vertical viscosity for stable conditions contains no

expression of the shear effects as it is based solely on the Brunt-Väisälä frequency:

Av = νb + r(N2)−s (4.14)

where r and s are again constants. This gives the following formulation:

Av =









ν0 N2 ≤ Nmin

νb + r(N2)−s N2 > Nmin

d ≤ d̄

νref + Av


d̄
exp[−0.025(d− d̄)] d > d̄

(4.15)

where a minimum value for the stability has been introduced in order to avoid large

values of Av for weakly stable conditions. To provide a continuous transition between

states Nmin should satisfy the following formula:

Nmin =
(

r

ν0 − νb

) 1

s

(4.16)

The constants r and s in this model are usually chosen so that the results of the

simulation of vertical mixing can be validated against measured data of other variables.

For example a series of vertical temperature profiles (BK), the velocity of resulting

flows (Pacanowsky & Philander 1981), or even explicit diffusion measurements from

tracer studies (Quay et al. (1980), Michalsky & Lemmin (1995)) can be utilised to

indicate appropriate values. This is impossible in the case of the riverine thermal bar

as even if detailed data were available then it would be erroneous to suppose that the

characteristics of the real lake could quantify the amount of vertical mixing in a model
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with no surface flux of heat or momentum. Instead these constants are chosen to model

relative diffusion rates between stable and unstable conditions and to produce a realistic

temperature profile after a long time of simulation, since the exact positioning of near-

surface source terms should make little difference to the final temperature solution.

Initially a value of viscosity for unstable conditions, ν0, and a value of minimum

viscosity for stable conditions, νb, are chosen with reference to similar modelling in the

literature (particularly BK). Then with a given profile of Ri or N values for r and s are

selected to significantly reduce vertical mixing during periods of strong stratification but

ensure as closely as possible a reasonable transition between stable and unstable values.

The whole process is repeated with different choices of viscosities and r and s until the

resulting temperature distributions seem as realistic as possible after a nominal period

of simulation.

4.5 Numerical Testing of Models

This section presents the results of an empirical study which shows that the Brunt-

Väisälä frequency is the best quantity on which to base our model for the vertical eddy

viscosity. Although all testing shown is carried out on the deep-lake Baikal section, the

same procedure was followed in the Kamloops Lake model, which requires a different

set of parameters to produce similar temperature profiles to those reported by Carmack

(1979).

The Richardson number formulation initially appears to be most suitable for our

purposes as it resolves both the stability and shear of the fluid in question. Testing of

both parameterisations is carried out on simulation T9 with the values shown in table

4.1 adopted in the turbulence models.

Results of these experiments in the centre of the domain after 20 days of simulation

(long after the lake has become stable in the upper region and the thermal bar has

disappeared) are presented in figures 4.4 to 4.7, on which the following discussion is

based. Predicted temperature profiles in the centre of the lake (compare figures 4.4(a)

and 4.6(a)) are similar in shape but it is clear that temperatures in the stable region
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Parameter Baikal Model 1 - Baikal Model 2 - Kamloops Model

Richardson number Brunt-Väisälä frequency

ν0 2× 10−2 m2s−1 2× 10−2 m2s−1 2× 10−2 m2s−1

νb 5× 10−4 m2s−1 5× 10−4 m2s−1 4× 10−4 m2s−1

r 5 6× 10−7 6× 10−7

s 2 0.5 0.5

Nmin − 9.46× 10−10 s−2 6.51× 10−10 s−2

d̄ 900 m 900 m 120 m

Table 4.1: Values of vertical turbulence parameters in testing and final mod-

els

of model 1 (d . 430 m) remain closer to the Tmd line than in model 2. This implies

that in model 1 there must be a drastic decrease in the vertical diffusivity after stable

stratification is attained near the surface, as the viscosity for unstable conditions is

identical in the two models. Further examination of the eddy viscosity in figure 4.4(b)

reveals that as soon as the fluid becomes stable (at N 2 > 0 here), model 1 reduces Av

directly to its background level νb without any intermediate region or regard for the

degree of stratification or shear.

Inspection of the Richardson number in figure 4.4(d) and (e) also weakens our confi-

dence in this model as it can be seen to fluctuate wildly over several orders of magnitude

within the space of a few metres in the vertical direction. More importantly it only pre-

dicts turbulent mixing in the stable layer (i.e. 0 < Ri < 0.25) for a very small proportion

of the domain, as Ri is usually evaluated to be orders of magnitude larger than 0.25.

By plotting the components of the Richardson number in figures 4.4(c) and (f) it can

be noted that the cause of this behaviour is that when evaluated numerically, the shear

term is generally many orders of magnitude smaller than N 2, which results in the large

values of Ri which reduce Av sharply to the background level νb.
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Figure 4.4: Properties of simulation T9 with model 1 in the centre of the

lake after 20 days: (a) temperature, (b) vertical eddy viscosity,

(c) stability, (d) Richardson number, (e) detail of Richardson

number, (f) shear term
(

∂u
∂z

)2
+
(

∂v
∂z

)2
.

Attempts to adjust the formulation (4.12) by choosing r and s so that mixing is

allowed at higher Richardson numbers have all been unsucessful as numerical instability

is initiated by the consequential magnification of the large variations in Ri. Here it

is useful to define the critical value of Ri, Ric (physically 0.25), where stratification

overcomes shear in a stable region. Several simulations were made which scaled the

effect of the Richardson number until Ric was between 10 and 100 but all produced

unsatisfactory results. The large variation of the Richardson number in a small space

produces regions of rapid vertical mixing adjacent to areas of strong stratification and

83



suppressed vertical mixing, resulting in a step-like temperature profile as seen in figure

4.5(a). This invalidates any attempt to apply the formulation (4.12) to our turbulence

model.
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Figure 4.5: Properties of simulation T9 with model 1 in the centre of the

lake after 20 days where r,s are chosen to scale Ric to match

predicted Ri. Here r = 7.18×10−4 and s = 10. (a) temperature,

(b) eddy viscosity, (c) Richardson number.

The previous observations on the Richardson number also provide good reasoning

for the abandonment of turbulence closure models, which are superior to the algebraic

models presented here because they avoid use of the Boussinesq eddy-viscosity approx-

imation by directly estimating the components of the Reynolds stress tensor (4.5). Un-

fortunately, the closure models which are usually adopted in oceanography, such as the

models first introduced into mainstream oceanographical literature by Mellor (1973),

tend to predict a mixing coefficient which is a function of the local Richardson num-

ber (Mellor & Durbin 1975) and rarely allow any mixing at all for Ri greater than

approximately 0.25 (Archer 1995).
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after 20 days: (a) temperature profile, (b) vertical eddy viscosity,

(c) stability.

Results of model 2 are considerably better, and the temperature profile after 20 days

seems more reasonable as it is further from the line of Tmd, implying that a vertical

diffusion of heat which is reduced but still present is operating after the upper lake has

become stable. Plotting the eddy viscosity in figure 4.6(b) illustrates the improvement

over model 1; the transition from unstable viscosity to stability-reduced levels is much

less abrupt and the background value νb is only approached in the region of relatively

strong stable stratification. Comparison of the eddy viscosity and Brunt-Väisälä fre-

quency (figures 4.6(b) and (c)) reveals the amount of physical information reaching Av

from N2 which was lost in model 1.

The discussion so far has centred on the 20th day of simulation when the model

is settling down to a stable situation, while the period of most interest to this study

is when the thermal bar is traversing the lake in the very early stages of each model

run. Contours from simulation T9 after 2 days presented in figure 4.7 reveal that the

85



differences between the models are significant even at this early stage. Isolines of Ri

(figure 4.7(a)) show that already it has taken large values, and only a tiny proportion

of the stable region has 0 < Ri < 0.25. The fluctuating behaviour and sudden growth

of Ri is not as pronounced as later in the simulation because here the stable region is

where the horizontal surface flows feed the thermal bar, so the shear terms in this region

are evaluated to be of the same order of magnitude as the Brunt-Väisälä frequency. This

plot shows that model 1 cannot be used to predict vertical mixing as the Richardson

Number is so large everywhere while model 2 may be used as the the Brunt-Väisälä

frequency quantifies the water-column stability in a smoothly-varying manner.
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Figure 4.7: Results of simulation T9 with each model after 2 days: (a) Ri

for model 1, (b) N 2 for model 2 (s−2).

The above justification of model parameter choices is based upon the formulation of

the eddy viscosity producing a realistic stable thermal profile after most of the motion

has ceased. However in the case discussed the stability is purely a function of vertical

gradients of temperature which is not the case throughout this work. Addition of salinity

to a thermally-buoyant inflow will always tend to increase vertical diffusion by reducing
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the overall stability as it causes a density increase near the surface as the river intrusion

spreads across the lake.

For these reasons, simulation of a thermal bar with saline input has a quite different

stable state to which it tends. Addition of salinity near the surface (in the absence of

temperature variations) will tend to produce mixing until the whole column is marginally

stably stratified, i.e. of almost uniform salinity. Thus when temperature and salinity

are introduced simultaneously near the surface the stable state will be a combination

of the two, where a stable profile of one constituent balances an unstable profile of the

other so that overall the fluid is stable apart from double-diffusive instabilities.

The results presented in figure 4.8 are from simulation T11S1, which has a rather

warm inflow and 1 mgkg−1 added to river salinity (see appendix A). It is clear that

the stable temperature profile is balancing the unstable distribution of salinity so that

the water as a whole is stable. Comparing the temperature profiles in figures 4.6 and

4.8 shows that much more diffusion has taken place in the upper half of the lake than

previously as a result of destabilisation due to the surface saline input. The lake is also

stable to a greater depth after the same simulation time due to the extra vertical diffusion

of temperature and salinity. It can therefore be seen that the Brunt-Väisälä formulation

behaves in a physically justifiable manner when under the influence of salinity gradients.

It must be concluded from this overall discussion that a model based on the Richard-

son number is unsuitable for the purposes of this study. Due to the way in which Ri is

predicted on this grid, any attempt to link Av to the shear of the flow-field simply results

in the removal of any stability information from the vertical viscosity, which produces an

excessively damped vertical transport. For this reason model 2 is adopted throughout

this work and the eddy viscosity is assumed solely a function of the stability of the water

column. This can have adverse effects on the accuracy of the predicted flow in stable

regions with large velocity gradients but the general absence of strong kinematic forcing

in these areas makes this model acceptable for the purposes of this study. It has been

shown in BK that this particular model replicates very well the measured thermal pro-

files of a spring warming episode (which is mainly controlled by stability considerations)

in the southern basin of Lake Baikal.
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Chapter 5

Preliminary Results

To provide a basis for comparison of later deep-lake simulations, some preliminary results

are presented here which are taken from simulations without a thermal bar. These results

are used to assess the effects of the thermal bar on the dynamics of the river plume and

the transport of riverine substances around a lake. Basic results from three control cases

in which the dynamics are relatively well understood are described here.

5.1 Simulation C

Simulation C is intended to quantify the flow-field and transport which is due to the

river velocity and initial conditions in the absence of any buoyancy effects. The river’s

temperature and salinity are therefore assumed to be equal to the lake, at TR = TL =

3.4◦C and SR = SL = 96.3 mgkg−1. The absence of a density difference between river

and lake therefore means that all flows are generated by the mass flux of uR = 0.005

ms−1 at the inflow and outflow.

As there are no gradients of temperature or salinity in this simulation, the param-

eterisation of the vertical eddy viscosity is redundant here and the domain is neutrally

stratified (N2 = 0) throughout. Av is therefore given a constant value, chosen from the

range assigned to stable and unstable conditions in the other simulations. An intermedi-

ate value of Av = 0.01 m2s−1 is employed on the basis that neither a stable or unstable

value has any physical justification. Numerical testing shows that in this simulation

the exact value adopted from this range makes very little quantitative difference to the

predicted motions on the time-scale of interest.
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The simulation starts from the usual initial flow field, described in sections 2.2 and

2.3.2, with uR fixed on the top 10 rows and zero velocity everywhere else. As the

simulation proceeds, the flow along the surface is maintained by the mass fluxes at the

top corners of the domain, with an extremely weak flow traversing the depths of the

lake in the same direction (figure 5.1). As the simulation proceeds, vertical diffusion of

momentum causes the horizontal flow to spread downwards and gradually weaken.
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Figure 5.1: Velocity vectors for simulation C after 2 days (plot resolution is

1
3

of model resolution).

Tracer distributions from this simulation are very important, as the study of deep

vertical mixing caused by the thermal bar cannot be quantified without such a reference

case. Concentrations given in figure 5.2 illustrate the difference in the riverine influence

on vertical and horizontal mixing rates. This anisotropy is primarily caused by con-

vection, since a river throughflow of this form is far more effective in mixing the tracer

across the lake than it is in depositing materials vertically into the deeper regions. It

may be noticed from this plot that vertical transport seems to be much larger than that

accounted for by the vertical diffusion rates alone. This transport results from shear in

the horizontal flows, which produces a small circulation beneath the river inflow in the

early stages of the simulation.
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Figure 5.2: Contours of tracer concentration for simulation C : (a) after 2

days, (b) after 4 days.

5.2 Simulations S1 and S2

A major part of this work is concerned with the effects of a salinity gradient over the river

inflow, so simulations S1 and S2 are introduced in order to quantify the dynamical effect

of adding a straightforward density increase to the river. These simulations also display

the characteristics of a saline sinking density current for comparison to a thermobaricity-

controlled case (see section 6.1.3). A simulation is identified as Sσ if it has σ mgkg−1

salinity added to the river and TR = TL = 3.4◦C, as detailed in appendix A.

Velocity vectors from simulation S1 (figure 5.3(a)) show the anticipated flow field,

with the river plume sinking to the bed of the lake immediately upon entry. This

movement is caused by the density increase at the surface due to salinity, which induces

a downwards buoyancy forcing which is strongest near the inflow region but extends

right to the bottom of the lake.

A brief analysis of results from simulation S2 also yields few surprises. Doubling the

salinity difference between the lake and river virtually doubles the density anomaly and
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a much stronger sinking flow is the result. Figures 5.3(b) and (c) show the difference

in vertical sinking speed between the two cases; the deepest waters in the domain are

quickly ventilated in both cases with saline waters from the river. The sinking current

in these simulations initiates a lake-wide circulation which results in a return flow to-

wards the inflow at the surface and a curtailment of the horizontal spreading of riverine

substances. This is an important feature which is discussed with reference to other sim-

ulations in later chapters. It may be noticed from this plot that vertical transport seems

to be much larger than that accounted for by the vertical diffusion rates alone. This

transport results from shear in the horizontal flows, which produces a small circulation

beneath the river inflow in the early stages of the simulation.
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Figure 5.3: Characteristics of the saline simulations after 2 days: (a) 1
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resolution S1 velocity vectors and position of profile in figure

6.7, (b) S1 vertical velocity contours (10−3 ms−1), (c) S2 verti-

cal velocity contours (10−3 ms−1).
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Chapter 6

Results - Simulation of The

Thermal Bar

This chapter presents a discussion of three deep-lake simulations with different initial

and boundary conditions for temperature. As described in section 2.3.3, one-dimensional

models of the river and lake are mixed in a two-dimensional section after three different

periods of warming, which provides a comparison between thermal bar simulations with

different temperature differences between river and lake. This approach is necessary

because insufficient computer power makes a full spring warming model of river and lake

interaction impossible on these relatively fine spatial scales. The effects of a riverine

salinity influx are not studied until chapter 7, so the salinity transport equation is

neglected for the time being.

Characteristics of the predicted flow-field are first described and justified individually,

and then important similarities and differences are raised in a comparison section. The

effect of different dynamics on the transport of riverine substances is then discussed

with reference to the neutral tracer ϕ, before the chapter is completed with a sensitivity

study of the river inflow rate and an examination of the effects of thermobaricity.
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6.1 Flow Dynamics

6.1.1 Simulation T9

Simulation T9 has a river of surface temperature 5.3◦C flowing into a lake with sur-

face temperature 3.8◦C, and is described first because it is arbitrarily chosen to be the

reference thermal bar model from which all comparisons are drawn. After 2 days of

simulation a plot of velocity vectors (figure 6.1) shows a clearly-defined thermal bar, in

which the front of the line of T = Tmd is accompanied by converging horizontal flows

and a descending plume of water due to the density maximum. This sinking region in-

duces lake-wide circulation patterns which clearly transfer heat and riverine substances

downwards into the domain. The stagnation point lags a little behind the surface out-

cropping of the T = Tmd contour, probably because of the inertia in the flow ahead of

it (Farrow 1995a).
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Figure 6.1: Velocity vectors and T = Tmd line for simulation T9 after 2 days

(resolution 1
2
). The vertical line marks the position of the profiles

in figures 6.3 and 6.7.

The river inflow produces a stably-stratified region (which is warmer than the Tmd)

on the inshore side of the thermal bar. Everywhere else in the domain the initial
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thermal conditions from the one-dimensional modelling give an unstable situation above

approximately 250 m and a marginally stable water column beneath this. The stable

river inflow region contains a shallow horizontal current at the very surface due to the

buoyancy of the warm inflow and the stability of the surroundings.

The horizontal current on the offshore side of the thermal bar has a much larger

vertical extent. Examination of contours of T −Tmd (figure 6.2) shows that the thermal

bar causes a mixed region beneath the stable surface intrusion which is warmer than the

waters offshore of the surface Tmd signature. This induces a horizontal density gradient

extending down to almost 200 m depth which drives the flow offshore of the thermal

bar. Surface currents in this region also experience a larger diffusion of momentum

downwards due to the unstable conditions.
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Figure 6.2: Contours of T − Tmd for simulation T9 after 2 days.

The maximum vertical acceleration at each depth in the nose of the stable intrusion

occurs at the horizontal position of the Tmd, and diffusion of momentum then forms the

resulting downwelling into a cohesive plume. A characteristic trait of the results in this

simulation is that the descending fluid is deflected back towards the inflow as it sinks.

This finding is consistent with the numerical results of Malm (1995) and the field results

of many other authors (Hubbard & Spain (1973), Carmack et al. (1979), etc.).

Close inspection of the thermal characteristics throughout the depths of the lake

(figure 6.2) shows that the centre of sinking follows the locus of the densest water at each
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particular depth, which leads us to conclude that earlier convection of heat downwards

by the thermal bar is responsible for the deflection of the plume at these later stages of

the thermal bar development. This is also visible in figure 6.1 as the local raising of the

lower T = Tmd line.

Some characteristics of a typical thermal bar plume are displayed in figure 6.3, a

vertical profile taken through the sinking region of figure 6.1. Plotting the thermal

change in the buoyancy term from initial conditions,

∆BT = − g

ρ0
(ρ(T, Sin, pin)− ρ(Tin, Sin, pin)) , (6.1)

where the subscript ‘in’ denotes an initial value, gives a qualitative indication of the

buoyancy forces acting upon the water column. The water accelerates downwards due

to its increased density but begins to decelerate shortly after since water at the surface

Tmd is warmer than the Tmd at depth due to the decrease in the Tmd with increasing

pressure. The decrease in magnitude of ∆BT with depth is mainly due to the surface

spreading of the warm-water intrusion. Raising the temperature actually decreases the

density of water near 300 m depth (and therefore causes a positive profile of ∆BT )

because heating moves the water temperature further from the Tmd in this region.
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Figure 6.3: Profiles of simulation T9 after 2 days at the position marked in

figure 6.1: (a) vertical velocity, (b) buoyancy forcing ∆BT .

The development of the subsequent circulation is best described with reference to the
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experimental results of Marmoush et al. (1984), who studied the thermal bar in a lock-

exchange tank experiment. Marmoush et al. (1984) report that after an initial period of

horizontal spreading, warm waters sinking within the thermal bar form a vertical front

beneath the surface point of T = Tmd. In the tank experiment, this distinct vertical

boundary between cool waters offshore of the Tmd and denser waters at (and inshore of)

the Tmd is then the site of a natural lock-exchange mechanism whereby the cabbeling

waters move horizontally along the bottom boundary beneath the lighter offshore waters.

The analogous flows in this simulation (after 8 days) are shown in figure 6.4. The

vertical front seen in figure 6.2 at about 2 km from the shore separates water bodies

of different densities, and the ‘thermobaric barrier’ at about 300 m depth is effectively

equivalent to the base of the Marmoush et al. (1984) tank. As the simulation proceeds

the lock-exchange character of the flow in the uppermost 300 m becomes apparent as the

denser water moves to the right at depths between 150 - 300 m and the lighter offshore

water moves shoreward to compensate at the surface (figure 6.4).
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Figure 6.4: Velocity vectors and T = Tmd line for simulation T9 after 8 days

(resolution 1
3
).

This analysis regards the T9 thermal bar as a two-stage phenomenon. The first

stage features a rapidly-moving thermal bar with a warm river intrusion floating on

the cooler lake and downwelling where cabbeling is active. The slower second stage
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begins when the surface gravity current is balanced by the offshore return flow and the

thermal bar can only proceed by gradual warming from the river. This takes place as the

river progressively warms the entire epilimnion to above the Tmd through a horizontal

intrusion immediately above the thermobaric barrier.

This process continues until, after more than 30 days, the thermal bar finally reaches

the opposite shoreline. The whole of the surface layer is then warmer than the Tmd, and

the travelling thermal bar ceases to exist. Our interest in the predicted motions wanes

long before this time as the assumptions of no surface heating, no coriolis forcing, and no

effect of outflow conditions are all invalid over long time scales, as discussed in section

2.3.4.

6.1.2 Simulation T11

Increasing the time of simulation of the one-dimensional models before mixing river and

lake produces a drastic change in the flows associated with the thermal bar, empha-

sising the sensitivity of the thermal bar to particular density conditions. Two days of

warming from the T9 scenario increases the river surface temperature to approximately

5.7◦C while the lake surface hardly changes at 3.9◦C. However, the small change in lake

temperature is more important as the associated density increase of the ambient lake

water means that much less mixed river and lake water will be denser and involved

in cabbeling. Velocity vectors in figure 6.5 show that the thermal bar propagates far

more rapidly in this case, unrealistically traversing the 6 km-width of the domain in

approximately 4 days.

The rapid movement of the thermal bar in this case is due to a strengthening in

the surface current on the inshore side of the density maximum. Unlike case T9 there

is very little return flow on the offshore side of the thermal bar to balance this strong

current. The return flow would usually counteract a rapid propagation by advecting

cooler water towards the line of T = Tmd and thereby preventing the advance of the

warmer waters and density maximum.
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Figure 6.5: Velocity vectors and T = Tmd line for simulation T11 after 2

days (resolution 1
3
). The vertical line marks the position of the

section shown in figure 6.7.

The river water, which is warmed far above the Tmd, immediately rises to the surface

upon entry to the lake. The large horizontal temperature gradient in the inflow region

initiates a rapid surface current, but only in the thin layer which is above the Tmd. The

warmer river increases the buoyancy of this region to such an extent that the river inflow

behaves like a surface gravity current rather than a cabbeling river plume.

Inspection of the velocity vectors does reveal a dense sinking plume at the nose of

this gravity current but this sinking flow is weaker than the horizontal current which

pushes it across the lake. The speed of propagation and the relative weakness of the

sinking means that vertical advection of heat is vastly reduced in this case. The density

of waters beneath the surface intrusion is therefore not increased as much as in case T9

(which is shown in figure 6.2). As a result, the density gradient between waters at depth

in front of and behind the surface position of T = Tmd is small and the return flow in

front of the thermal bar is significantly weaker.

6.1.3 Simulation T7

Mixing the river and lake after only 7 days of simulation produces the opposite scenario

to T11, generating a thermal bar circulation from a relatively small temperature gradient

at the inflow (surface river temperature 4.7◦C against a lake surface temperature of
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3.8◦C). Unlike the previous cases, this thermal bar does not propagate away from the

river mouth and the river simply sinks upon entry to the lake, as shown in figure 6.6(a).

This simulation is thus included as an example of a riverine thermal bar which is not

capable of travelling away from the source of cabbeling.
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Figure 6.6: Characteristics of case T7 after 2 days of simulation: (a) Velocity

vectors, T = Tmd line, and position of the section shown in figure

6.7 (resolution 1
3
, (b) isotachs of vertical velocity (10−3 ms−1).

The thermal bar does not move away from the river mouth because the temperature

difference between it and the river (TR−Tmd) is too small to generate the strong surface

current seen in cases T9 and T11 on the inshore side of the thermal bar. The river

temperature is close enough to the Tmd for the majority of the inflow waters to become

involved in cabbeling as soon as they enter the domain. This means that there is very

little mixed water which is less dense than the ambient lake and therefore capable of

forming a strong current to move the thermal bar.
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As there is no significant surface gravity current to move the cabbeling away from the

inflow, the sinking plume remains near the boundary and induces a large circulation cell

in the remainder of the lake. This structure includes a return flow at the surface which

impedes any possible propagation of the thermal bar, strengthening the descending flow

near the river inflow. This feedback process prevents the thermal bar from moving until

the whole lake is significantly warmer than the Tmd and the inflow floats on the surface

of a stable body of water.

Although the river plunges upon entry to the lake, the dynamics are not simply

those of a straightforward boundary current. Comparison of vertical velocity isotachs

for T7 with those for S1 (figures 5.3(b) and 6.6(b)) reveals that the descending fluid

motion is damped far more rapidly in the thermally-controlled case. This is due to the

fundamental difference between the virtually linear relationship between salinity and

density and the non-monotonic relationship between temperature and density.

Flow characteristics of T7 and S1 are initially very similar; the river induces a density

increase near the surface, producing a near-boundary sinking flow which decelerates with

depth due to continuity, diffusion of momentum, and the decrease in the Tmd. However,

vertical advection of heat and salinity in these plumes affects the subsequent circulation

in very different ways. Introducing the buoyancy change due to salinity,

∆BS = − g

ρ0

(ρ(Tin, S, pin)− ρ(Tin, Sin, pin)) , (6.2)

figure 6.7(b) shows that advection of salinity increases the downwards buoyancy force

at depth, which strengthens the resulting flow, whereas advection of heat downwards

moves the water column further from the Tmd and produces an upwards buoyancy force

which suppresses sinking at that depth. Figure 6.7 is discussed in greater detail in the

following section.
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Figure 6.7: Properties of each simulation at the position of the main down-

welling plume after 2 days: (a) vertical velocity, (b) appropriate

change in buoyancy (∆BT or ∆BS). The position of each of these

sections is shown in figures 5.3(a), 6.1, 6.5, and 6.6(a).

6.1.4 Comparison

The three thermal bar scenarios presented above have several important similarities and

differences. They all have a region of fluid which sinks due to compaction on mixing,

but they have totally different overall circulation patterns as a result of the varying

horizontal movement of this sinking region.

The cause of this variation in flow regime is the difference in horizontal density dis-

tribution between the three cases, which is shown at 10 m depth in figure 6.8. The most

important feature of this plot is the imbalance in each case between density gradients

on the inshore and offshore sides of the maximum. It is this imbalance which governs

the horizontal position of the thermal bar, implying that the density characteristics

distinguish between the three types of dynamics described previously.
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Figure 6.8: Density profiles for all non-saline cases at 10 m depth after 2 days

of simulation.

Comparison of vertical sinking rates in the centre of each plume (figure 6.7(a)) shows

that a slowly-moving thermal bar has a stronger downwelling than a rapidly-propagating

one. This is because the vertical advection of heat in one position is more pronounced

in a slowly-propagating thermal bar, and this transport results in a larger downwards

buoyancy forcing (figure 6.7(b)), which causes the higher downwelling speeds.

6.2 Transport of River-Borne Materials

The converging surface flows and descending plume of the thermal bar are commonly

viewed as a dynamical barrier to horizontal advection within a water body (Carmack

et al. 1979, Kay et al. 1995). This barrier limits the amount of water available for

dilution of any noxious substances carried in the river, which produces the need for

special care when determining maximum effluent release concentrations (Hubbard &

Spain 1973, Wetzel 1983, Moll et al. 1993).

Many authors also discuss how the thermal bar may advect Oxygen vertically to

considerable depths (Carmack et al. 1979, Shimaraev et al. 1993), with the implication

that pollutants could be similarly transported. Sinking generally increases the residence

time of any particular substance in a lake because outflowing river waters are usually

drawn from the surface (Carmack et al. 1979). In addition, transport of pollutants
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to a significant depth could generate particular problems for Baikal’s rare deep-water

organisms (Haedrich 1996). The vertical currents generated by the thermal bar may also

form a crucial mechanism in the annual plankton cycle of Baikal by re-suspending heavy

diatoms which sink in the spring after an under-ice bloom in the winter (S.Semovski,

personal communication).

In this section each of these claims are tested on the non-saline thermal bar by close

scrutiny of transported concentrations of the tracer variable ϕ which represents a river

influx of neutrally-buoyant material.

6.2.1 Horizontal Transport

The horizontal transport of riverine materials is mainly of interest at the surface of

the lake, since most characteristics of the river water transfer at depth are governed by

vertical movements. Propagation rates from different simulations are therefore compared

by plotting the movement of the surface signature of the 10% concentration of tracer

against time (figure 6.9).

10% is chosen as the representative proportion of riverine tracer for several reasons.

Firstly, it follows the position of the thermal bar plume quite closely, as converging

flows above the plume produce a gradient in tracer which usually contains this value.

This means that information on the movement of the thermal bar as well as riverine

substances may be gleaned from this plot. In addition, testing has shown that other

tracer concentrations have very similar characteristics but on different time-scales, and

10% is therefore chosen because it is sufficiently representative of the differences between

simulations but also minimises data storage requirements.

Although the flow in control case C is purely driven by fixed velocities, it is clear

from figure 6.9 that the horizontal movement of riverine substances is governed by

diffusion across most of the domain. This is obvious from the nonlinear increase in

distance travelled with time; initially there is a large horizontal tracer gradient and the

propagation (diffusion) is rapid, and later on the tracer spreading is slower because the

gradients are weaker. Inspection of horizontal terms in the transport equation for tracer

ϕ confirms this analysis, although convection does play a small role in producing this
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tendency because horizontal advective flows also weaken as the simulation proceeds.
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Figure 6.9: Horizontal movement of 10% riverine tracer value at surface in

all simulations.

Since the 10% contour closely follows the position of the thermal bar, the differences

in horizontal movement of tracer between the other cases pictured in figure 6.9 have

already been discussed and justified. In case T9 the movement of tracer is very similar

to the control case for the first day of simulation, despite the huge difference in forces

governing this propagation.

The explanation for this similarity lies in the transport properties at the nose of the

river intrusion, which are studied by scrutiny of a horizontal profile of tracer convective

and diffusive flux terms 25 m below the surface. The discussion behind the choice

of horizontal diffusivity Kh in section 4.2 should be remembered when referring to a

convection-diffusion comparison of this nature; a rather qualitative analysis is the best

that can be expected due to the arbitrariness of the choice of Kh.

In case C, tracer propagates as a result of convection and diffusion away from the

inflow in this region (figure 6.10(a)), whereas movement of tracer at this position in
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simulation T9 is produced from a conflict between advection of tracer-free water towards

the inflow and the increased diffusion of tracer away from the inflow which results from

the steep tracer gradient caused by convergence in the thermal bar zone (figure 6.10(b)).

After one day the balance between convection and diffusion in case T9 produces the

same net transport as case C. However, after two days the growing convection from the

offshore circulation begins to delay the thermal bar and horizontal propagation of tracer

away from the river mouth in simulation T9 is halted rather sharply, as described in

section 6.1.1, before actually reversing for a short time.
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Figure 6.10: Horizontal convective and diffusive fluxes of tracer (uϕ and

−Kh
∂ϕ
∂x

respectively) in the different simulations after 2 days

(×10−3s−1): (a) C, (b) T7, (c) T9, (d) T11.

Unsurprisingly the horizontal movement of tracer is impeded quite severely in case

T7. As in the other cases the initial movement is fairly rapid due to convection from the

fixed inflow velocity, but the effects of vertical sinking down the boundary soon become

apparent as the recirculation begins. The movement of tracer away from the river is first
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halted and then reversed by ever-stronger convection of tracer-free water towards the

inflow which is forced by the sinking region. This reversal ceases only when convection

towards the river mouth steepens the tracer gradient to such an extent that diffusion

equals convection, forming a horizontal equilibrium which is almost present in figure

6.10(c).

The results for case T11 show an enhanced rate of horizontal mixing by the thermal

bar as a consequence of the rapid movement of the surface gravity current across the

lake. It is also observed that the propagation curve is nearly linear in this case, which

indicates that convection is the driving force behind this movement. Closer inspection

of tracer transport terms (figure 6.10(d)) confirms that the horizontal convection of

tracer dominates diffusion over most of the domain, although interestingly diffusion is

strongest at the very nose of the river intrusion. It is therefore the strong convection

of heat (which has a similar profile to that of tracer convection in figure 6.10(d)) which

propagates the thermal bar rapidly across the domain.
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Figure 6.11: Horizontal distribution of riverine tracer for thermal bar simu-

lations after 2 days.

The above results show that the thermal bar may increase or decrease the horizontal

spreading of riverine substances from a lake-wide perspective, but locally the thermal

bar always acts as a barrier to horizontal spreading due to its horizontal convergence and

increased vertical mixing. Horizontal profiles of tracer (figure 6.11) confirm this analysis
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by showing that in every simulation the tracer gradient is steepened in the region of the

thermal bar.

6.2.2 Vertical Transport

Assessing the vertical transport by the thermal bar is the primary aim of this study, but

unfortunately it is rather difficult to quantify the vertical movement of tracer substances

in flow regimes of such a varying nature. To avoid this problem, plots of the sinking

achieved by a particular tracer concentration are taken at the horizontal distance from

the inflow which gives the deepest value. Extreme care must therefore be taken with

this discussion because the given depths may be taken at a different horizontal position

for each simulation and time increment. The smallest maximum depth which the tracer

value will reach is 50 m, the depth of the inflow region.

Figure 6.12 shows the maximum depth achieved by a 1% concentration of tracer for

each simulation as a function of time. As in section 6.2.1, the 1% value was chosen

to minimise storage requirements after testing showed that the characteristics of figure

6.12 are preserved when using other reasonable reference values of ϕ. This choice is also

suitable because a 1% concentration of any riverine substance is a significant amount

for the purposes of pollution and oxygenation studies.

In general terms this picture shows that the thermal bar is rather ineffective at

mixing high concentrations of riverine matter to the bottom of any lake which is deeper

than about 350 m. This agrees with thermal bar maximum-depth estimations based

upon the decrease of the Tmd with depth (Carmack & Weiss 1991). This maximum

mixing depth is not unique to the tracer concentration of 1%; a closer analysis shows

that vertical convection plays a secondary role to diffusion beneath 400 m and values of

tracer are lower than 0.01% there while the thermal bar operates. In contrast to this

result, it can be seen that saline gravity currents renew waters at the very bottom of the

domain after a continuous downwards mixing near the mouth of the river. Case T9P

is a T9 simulation which has all thermobaric effects removed, and is fully discussed

in section 6.4; for the time being it is sufficient to note that the plume immediately

transports riverine matter to the lake bed in this case. The plot clearly shows that it

is the pressure effects upon the thermal control of density which impedes mixing in the
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thermal bar cases.
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Figure 6.12: Maximum depth of 1% riverine tracer concentration for all sim-

ulations.

The least vigorous vertical transport is given by the control case C which has no

variation in density. Due to the lack of any buoyancy forcing, the vertical velocity in

this case is produced solely as a response to the horizontal motion at the inflow and

outflow boundaries, and is very weak accordingly. The vertical transport of tracer is

thus solely governed by diffusion at the intermediate value of vertical eddy viscosity

which is arbitrarily assigned to this simulation.

Case T11 barely provides any increase on control simulation C, giving the least ver-

tical transport of all of the cases involving density-induced momentum. This happens

because the thermal bar traverses the lake so quickly that there is not enough down-

welling in one position for descending flows to produce a significant downwards transport

of tracer.

Simulation T9 shows an increase over case T11 in the vertical movement of tracer.

This is partly due to the larger vertical velocity in this case (figure 6.7(a)), but is
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primarily a result of the slower horizontal propagation of the thermal bar. Since the

thermal bar renews water in one place for longer, the maximum depth of the 1% tracer

concentration in the domain is deeper than that of simulation T11 even though the

total mixing averaged over the domain is initially similar. It is emphasised that this

case, which is considered to be the reference thermal bar simulation, does not produce

enough mixing to carry tracer concentrations of 1% or larger beneath 350 m.

A comparison of tracer plots for simulations T7 and S1 invokes the discussion of

section 6.1.3. Initially the tracer transport profiles for these two scenarios are extremely

similar, and the vertical transport due to cabbeling in case T7 actually exceeds the

transport of case S1 for the second day of simulation. However, while transport in the

saline case continues as before after this time, the descending flows of the T7 thermal

bar cease to transport matter any deeper. In fact the downwards movement of tracer is

reversed after 2 days of simulation because the water column near the inflow becomes

warmer than the Tmd throughout. Advection of warm waters downwards then produces

an upwards buoyancy force due to the decrease in the Tmd (figure 6.7(b)), which forces

the water to stop sinking and move horizontally away from the boundary. This move-

ment causes a small upwards convection of tracer-free water near the boundary, which is

just powerful enough to account for the raising of the deepest 1% tracer concentration.

6.3 Effects of Inflow Velocity uR

Since the velocity of the throughflowing river is arbitrarily chosen in this work, this

section contains results and a brief discussion of an inflow-velocity sensitivity study

based on a comparison of case T9 with simulations T9U0 and T9U1, which are identical

to T9 apart from their inflow velocity, which is uR = 0 and 0.01 ms−1 respectively.

When compared to figure 6.1, velocity vectors in figure 6.13 show that the speed of

propagation of the thermal bar is significantly altered by changes to the inflow velocity,

even at these low values. It can be observed that the river’s discharge pushes the thermal

bar across the lake by strongly influencing the inshore currents at the very surface. The

inflow rate also controls the circulation beneath this surface flow, as T9U1 contains

a clockwise-rotating current which accompanies a strong upwelling beneath the river
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inflow, while T9U0 has no such upwelling motions and displays a weak circulation only

within the stable river intrusion.
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Figure 6.13: Velocity vectors and T = Tmd line after 2 days for simulations

with various uR (resolution 1
2
): (a) T9U0, (b) T9U1.

Despite these differences, this study shows that, like increasing Ah, the qualitative

effects of increasing uR on the actual form of the thermal bar and flows around the lake

are relatively small. The fluid motions plotted in figure 6.13 show all of the major T9

characteristics discussed in section 6.1.1, such as the inshore surface current, deflected

sinking plume, and unbalanced vertical extent of horizontal currents on either side of

the thermal bar. Most importantly, the vertical motions generated by the river inflow

are of a very similar magnitude in all three cases. This happens because raising the

inflow velocity does not significantly alter the horizontal density gradient (containing

the Tmd) at the very nose of the river intrusion, which is responsible for the vertical
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motions of the thermal bar and therefore the circulations in the lake. Instead, the river

merely transports this region of horizontal density variation across the lake.

Numerical testing shows that it is possible to produce more dramatic changes in the

flow regime by increasing the rate of flow through the domain further. However, while

the tested uR values may be low for a shallow river outlet, it is important to remember

that the river inflow to this model is 50 m deep and velocities should not be much larger

than those tested here, as discussed in section 2.3.2. In any case, the object of this study

is to examine flows driven by buoyancy effects rather than kinematic forcing.

6.4 Effects of Thermobaricity

An important advance of this study over most previous work is the inclusion of pressure

terms in the equation of state, which resolves the decrease in the Tmd with depth. The

effect of pressure variation on the thermal expansion coefficient is called thermobaricity

and is an important consideration when studying vertical advection in lakes as deep

as Baikal. Thermobaricity is generally neglected in lacustrine modelling because the

pressure variation in the vast majority of lakes is negligible due to their shallowness

relative to Baikal. Results from this section and chapter 8 show that this assumption is

broadly valid for lakes of up to 200 m depth.

As thermobaricity is so important to thermal bar dynamics in a deep lake, it is

included in all simulations and a simplification of the model is therefore required in

order to gauge its effects. For comparative purposes a modified version of simulation

T9 was performed in which the pressure variation throughout the depth of Baikal was

ignored in density calculations, so that p = 0 was fixed in the equation of state (2.8)

and eddy-viscosity formulation (i.e. α and N 2). The resulting simulation, T9P, is

crucial to the study because it justifies some of the buoyancy arguments made in the

thermobaricity-resolving cases and allows this modelling work to illustrate the situations

under which thermobaricity is vitally important.

Results in this simulation are considered after only one day of simulation to ease a

comparison with other cases; after two days the circulation is so strong that buoyancy
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changes and vertical velocities are unrecognisable in the context of the previous results.

After this time, the non-thermobaric cabbeling is responsible for a significant down-

welling near the inflow region, as shown in figure 6.14(a). This sinking region extends to

the very bed of the lake and attains vertical velocities which are an order of magnitude

larger than those of case T9 after half of the simulation time, as shown by a comparison

of figures 6.7(a) and 6.14(b). This strong vertical movement impedes the propagation

of the thermal bar in the same fashion as that of case T7 ; the extra sinking velocity

relative to the horizontal temperature gradient causes a larger shoreward return flow at

the surface (via continuity) and the movement of the T = Tmd line is halted.
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Figure 6.14: Characteristics of case T9P after 1 day of simulation: (a) Veloc-

ity vectors and T = Tmd line (resolution 1
2
), (b) vertical velocity

and change in buoyancy ∆BT at the position marked in (a).

The extra sinking induced in this case is clearly a result of the depth-uniformity of

the equation of state, and figure 6.14(b) reveals how the lack of pressure dependence

affects the buoyancy forcing. Clearly a depth-constant Tmd ensures that the downwards
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advection of heat always produces a density increase and downwards buoyancy forcing,

inducing a strong descending current throughout the depth of the lake.

Plotting the vertical transport in T9P against some other cases (figure 6.12) high-

lights the importance of thermobaric effects in Lake Baikal. While vertical transport is

severely impeded in case T9, the boundary current of T9P plunges river water to the

bed of the lake even more quickly than the higher-salinity control case S2. As well as

illustrating the theory of Carmack & Weiss (1991), this result confirms the uniqueness

of Baikal’s deep ventilation mechanisms, since there can be no other temperate lake in

which thermobaricity is so important.
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Chapter 7

Results - Effects of Salinity

Introducing a riverine influx of salinity to the simulation of the thermal bar is the

primary advance of this deep-lake study over previous modelling work. This chapter

details the effects of a difference in salinity between river and lake upon the thermal bar

results described earlier.

Average salinity values for Lake Baikal and the Selenga River are given at 96.3

mgkg−1 and 126.8 mgkg−1 by Falkner et al. (1991) and Votintsev (1993) respectively.

Unfortunately, the use of this exact Selenga value is not appropriate here as it is taken

from a measuring station immediately above the Selenga delta, and is therefore a con-

centration from a relatively shallow river several kilometres upstream of the 50m-deep

inflow region used in these simulations. The salinity of the river inflow used in this work

is much closer to the ambient lake value as it is assumed that the river water undergoes

considerable mixing in the delta before entering the model domain.

As described in section 2.3.2, these salinity studies were performed by adding con-

centrations of 1, 2, 5, and 10 mgkg−1 to the river salinity and keeping the lake value

constant at 96.3 mgkg−1. These small differences in salinity are sufficient to radically

alter the flows predicted in each simulation, and in the majority of cases described here

the thermal bar is transformed into a boundary current similar to that of case T7.

The effects on density of the ranges of temperature and salinity employed here are

illustrated in figure 7.1, where isopycnals are plotted for pressure levels of 0 and 50

bar. This plot is provided as a reference for the discussion in this chapter, which often

cites the complex interplay of temperature, salinity, and pressure effects upon density
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as justification for the predicted motions.
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Figure 7.1: Isopycnals at two pressure levels over the ranges of temperature

and salinity relevant to this study: (a) atmospheric pressure, (b)

50 bar.

7.1 Simulation T9

Since the three thermal cases have four saline variants each, the saline T7 and T11 sets

are not described in full here in the interests of brevity. Instead, a full description and

analysis of each saline T9 case is given and results of the other cases are related to these

findings as appropriate.

7.1.1 Case T9S1

A representative impression of the effect of riverine salinity on the thermal bar may

be gained by comparing velocity vectors after 2 days from case T9 with those from

T9S1 (figures 6.1 and 7.2(b) respectively). It is clear from these plots that the saline

component of the river-lake density difference impedes the horizontal propagation of the

thermal bar and causes a localised circulation at the river mouth. However, figure 7.2(b)
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also shows that this salinity-enhanced vertical flow is sharply suppressed beneath about

350 m in depth.

(a) (b)

   0

  50

 100

 150

 200

 250

 300

 350

 400

Depth (m)

0 0.5 1 1.5 2

Distance (km)

T=Tmd

 450

0 0.5 1 1.5 2

Distance (km)

T=Tmd

10   ms-2     -1
2  10   ms-3     -1

10   ms-2     -1
2  10   ms-3     -1

Figure 7.2: Velocity vectors for case T9S1 (resolution 1
3
): (a) after 1 day, (b)

after 2 days.

A study of earlier vectors (figure 7.2(a)) shows that the downwelling at the boundary

starts as soon as the simulation is initiated because mineralisation and cabbeling ensures

that the mixture of river and lake water is denser than the ambient lake. The surface

Tmd position is offset slightly from the river mouth by the warm waters inshore of the

density maximum, but beneath this the sinking takes place immediately adjacent to

the boundary. At this time the river plume descends relatively slowly but the depth

attained by the sinking is much greater than later in the simulation (compare figures

7.2(a) and (b)).

Later vector plots reveal that the near-boundary sinking gets stronger and shallower
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with time, so that after 4 days the descending flow is much stronger but does not sink

past 250 m (not shown). The river water moves horizontally away from the boundary

at this depth and a circulation cell is formed in the top section of the domain, with very

little vertical movement below this.

As before, the flow patterns described above can be explained by consideration of

the buoyancy forcing and continuity effects. The progression of the total change in

buoyancy plotted in figures 7.3(a) and (b), where

∆B = − g

ρ0

(ρ(T, S, Pin)− ρ(Tin, Sin, Pin)) , (7.1)

shows that the magnitude of the density change from initial conditions increases as

time proceeds. The near-river increase in density due to salinity (which generates the

∆BS profile) is seen to be more extensive at depth after 2 days due to the movement of

salinity downwards. This acts against the increase in positive buoyancy change at depth

which results from the downwards advection of warm waters (∆BT ). Overall, however,

the total density change ∆B reflects the ∆BT profile more than the ∆BS profile and

thermal effects are therefore held to dominate salinity in determining ∆B. ∆B seems to

become more polarised with time, as the large positive and negative buoyancy forcings

(  10   ms   )  -5       -2

   0

 100

 200

 300

 400

 500

Depth (m)
(a) (b)

-1 -0.5  0  0.5  1

(  10   ms   )  -5       -2
-1 -0.5  0  0.5  1

∆B

∆BT

∆B
∆BT

∆BS∆BS

Figure 7.3: Buoyancy characteristics ∆BT , ∆BS and ∆B for simulation

T9S1 : (a) after 1 day, 500 m from left shore, (b) after 2 days,

500 m from left shore.
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from the different sources grow over a small vertical extent.

This component analysis indicates that after 24 hours the flows are governed by

near-surface density characteristics, resulting in a weak flow extending to a relatively

great depth, but after 2 days buoyancy forcings down to 400 m depth are important

due to the vertical advection of density-altering substances. On longer timescales the

thermal dominance of buoyancy change at 300 - 400 m depth grows to such an extent

that water cannot sink past this region, and descending waters are therefore deflected

out into the lake.

These deflected waters travel horizontally away from the plume, heedless of the

downwards curvature of the T − Tmd contours, under similar forcings to the deflected

plume of the T9 case after 8 days, which is described in section 6.1.1. This water does

not sink due to the presence of the thermobaric barrier and rises instead to form the

rapid circulation offshore of the Tmd which feeds the near-boundary sinking region.

7.1.2 Case T9S2

Increasing the input of riverine salinity in case T9S2 produces qualitatively similar

dynamics, but with a considerably stronger downwelling (figure 7.4). An important

difference is that the small horizontal propagation seen in case T9S1 is suppressed much

more quickly and after 2 days the surface cabbeling takes place immediately adjacent

to the river mouth. This plot also shows that the stronger forcing and faster flows of

this case produce a narrower boundary current than previously, allowing the growth of

a deeper circulation offshore of the main plume. A good example of this lower sinking

plume is shown in figure 7.4 at 300 m - 400 m depth and 1.5 km from the river mouth.

These new features can also be related to changes in buoyancy forcing from initial

conditions. Comparing figures 7.3(b) and 7.5 it can be seen that salinity effects char-

acterised by ∆BS exert a significant influence over the total buoyancy change ∆B in

case T9S2. The maximum absolute value of ∆BS is larger than in case T9S1 and this

quantity attains a consistently large negative value over a considerable vertical distance

as a result of increased downwards advection of salinity in one fixed position. This

means that the total change in buoyancy forcing ∆B is directed downwards with a
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larger magnitude and over a greater depth than previously.
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It is tempting to postulate that this rapid downwelling caused by extra salinity

would partially overcome the thermally-induced positive buoyancy change at depth and

ventilate much deeper waters than in case T9S1. However, a comparison of figures

7.2(b) and 7.4 shows that waters do not sink much further, a surprising result which can

be explained by consideration of ∆BT in figure 7.5. It can be seen that the increased

vertical advection of case T9S2 transports more heat downwards than case T9S1, which

increases the positive values of buoyancy change at depth and therefore brings the

downwelling to a halt.

The secondary plume in case T9S2 results from the increased levels of salinity in

the flows emanating from the base of the descending boundary current. The control of

the flow horizontally away from the boundary is described in section 6.1.1 as a lock-

exchange mechanism whereby a dense intrusion spreads along the thermobaric barrier.

In contrast to T9, the T9S2 version of this current transports increased salinity to this

region, causing the water to breach the thermobaric barrier when it has travelled far

enough from the region of strong resistance caused by the downwards heat transfer near

the boundary.

7.1.3 Cases T9S5 and T9S10

Adding larger salinities to the inflow generates results which extrapolate the trends

established by cases T9S1 and T9S2. Velocity plots show that in each case the cabbeling

generates a boundary plume which sinks to a particular depth and is then halted, with

waters propagating away from the boundary at the base of the plume (not shown). The

depth at which this plume stops sinking will hereafter be referred to as the ‘equilibrium

depth’ because it arises from a balance of buoyancy effects. A secondary plume is also

observed in both cases, and closer examination reveals that this flow is stronger in case

T9S10. This provides more circumstantial evidence to support the proposition that

salinity is the governing factor in this phenomenon.

Profiles of buoyancy forcing change ∆B taken down the centre of each sinking bound-

ary current are remarkably similar to each other in tendency (figure 7.6(a) and (b)). In

both cases the ∆B profile has the general characteristics of ∆BT but is modified by a

∆BS-induced shift towards negative change (i.e. downwards forcing) which is almost
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uniform with depth. Figure 7.6(b) shows that buoyancy change in case T9S10 is utterly

dominated by ∆BS above 200 m depth.
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Figure 7.6: Buoyancy characteristics ∆BT ,∆BS, and ∆B after 2 days: (a)

case T9S5, 400 m from left shore, (b) case T9S10, 150 m from

left shore.

It is clear that the addition of salinity to these plumes increases the plume density

relative to the lake, and thus modifies the overall thermal control of the sinking. Plumes

with a higher salinity sink further because a larger difference between plume temperature

and the local Tmd is required to balance the haline density increase and set the plume’s

equilibrium depth.

7.1.4 Comparison

The delaying effect of riverine salinity on the horizontal propagation of the thermal bar

is a direct consequence of its influence on the delicate balance of density gradients on

either side of the maximum. Figure 7.7 shows near-surface horizontal density profiles
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after 2 days for the T9 cases of various riverine salinity. A clear observation from this

figure is that the density maximum attains a higher value in saline cases than otherwise.

This is fairly obvious, since salinity always increases density, but is very important in

understanding the mechanisms behind the overall flow pattern. As the density of the

plume is further from the ambient lake density than in non-saline cases, the plume will

sink more rapidly into the lake water and the flow towards the thermal bar on the

offshore side (i.e. between lake and thermal bar) will be stronger due to the steeper

density gradient.
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Figure 7.7: Density profiles at 10 m depth for all T9 simulations after 2 days.

The increase in the offshore density gradient is particularly important because the

riverine salinity also lessens the density difference between the maximum and the river

by increasing the river’s density more than the density maximum (figure 7.7). As a

result the dominant flow switches from inshore of the density maximum in case T9 to

offshore in case T9S5, with drastic consequences for the propagation of the thermal

bar. Continuity-driven return surface flow from the stronger sinking also plays a part

in curtailing the forward movement of the saline thermal bar.

Figure 7.7 also shows that T9 cases with river salinity differences of 10 mgkg−1 and

above have a river inflow which is denser than the lake before any mixing has taken

place. This plume would never propagate away from the river inflow but is of interest to

this study because thermobaric control of the equilibrium depth takes place as before.
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7.1.5 Transport Properties

The effect of salinity on transport is studied, as before, by consideration of position vs.

time charts of a concentration of river tracer ϕ. The plot of horizontal tracer propagation

(figure 7.8(a)) is relatively uninteresting; clearly the horizontal movement of the thermal

bar is impeded by salinity, an effect which is intensified as more salinity is added to the

inflow.
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Figure 7.8: Transport properties of T9 simulations with various riverine

salinity: (a) horizontal movement of 10% tracer value at surface,

(b) maximum depth of 1% riverine tracer concentration.
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In all saline cases, the thermal bar initially propagates away from the river before

the buoyancy-driven circulation from the boundary flow initiates a significant return

current. By advecting cool tracer-free water towards the river this return flow forces a

retrograding in the movement of the tracer and thermal bar. Therefore the more salinity

is added to the river, the more the horizontal propagation of tracer is suppressed.

Saline effects on vertical transport are a little more interesting. Figure 7.8(b) shows

that adding 1 mgkg−1 salinity to a river initially increases the mixing of riverine sub-

stances into the lake, but surprisingly after 4 days the net penetration is the same as

case T9, with a maximum 1% tracer concentration depth of just 350 m. The tracer sinks

more rapidly, but then rises slightly as the positive buoyancy changes at this depth force

the sunken fluid to resettle.

The effect of adding extra salinity in case T9S2 is equally surprising. Although

a marked increase in tracer sinking rate is noted, the maximum depth of net tracer

transport is rather similar to case T9S1. Indeed, after 2 days the maximum depth of

1% river water is only 10 m deeper in case T9S2 than in case T9S1. Moreover, after 4

days the effect of doubling the salinity difference between river and lake (at these values,

which are admittedly small) is to increase the maximum transport depth by a mere 40

m.

Once more, cases T9S5 and T9S10 follow the trend laid down by the simulations with

a lower river salinity. Adding salinity initially quickens the rate of downwards vertical

transport but an equilibrium is then formed which prevents any further sinking. The

time taken for the formation of this vertical balance decreases with increasing salinity,

since stronger downwards flows rapidly move warm waters into a position where they

are far from the Tmd, generating the positive buoyancy change required to balance the

saline density increase and set the equilibrium depth.
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7.2 Simulation T11

Streamline plots for the four saline variants of case T11 show that there are two distinct

flow regimes found at different salinity levels (figure 7.9). Higher-salinity cases T11S5

and T11S10 produce the familiar dynamics of a sinking boundary current and thermo-

baric barrier, while cases T11S1 and T11S2 feature an entirely new phenomenon: the

travelling saline thermal bar.
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Figure 7.9: Streamlines for each saline T11 case after 2 days: (a) T11S1, (b)

T11S2, (c) T11S5, (d) T11S10.

The driving force behind the movement of this travelling thermal bar is the large

temperature anomaly between river and lake which is the defining characteristic of case
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T11. Streamlines in figure 7.9(a) show that the gravity current near the surface behaves

similarly to that of the non-saline case (compare to figure 6.5), but beneath the surface

flow conditions are very different. Since T11S2 has similar dynamics to T11S1, its

description is neglected here in favour of a fuller explanation of T11S1 flows.

When the surface point of T = Tmd moves away from the river in case T11, the

sinking region beneath the maximum in density moves with it, as shown in figure 6.5.

This happens because all buoyancy forces in the domain are dominated by the relatively

large temperature gradients near the surface of the lake. In case T11S1, early advection

by the thermal bar in the vicinity of the river mouth alters the density characteristics

at depth considerably by transporting salinity downwards, initiating a plume at depth

which persists even when the surface gravity current moves the near-surface cabbeling

away from the river inflow. This plume, which attains the maximum density at depths

greater than 100 m, then draws thermal bar waters horizontally back into it, eventually

warming a column of water through the Tmd and establishing stable stratification.
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Figure 7.10: Density profiles for all T11 cases after 2 days at 10 m depth

In contrast to the travelling thermal bar in the above discussion, the flows generated

in cases T11S5 and T11S10 are remarkably similar to the boundary currents of their

saline T9 counterparts, even as far as the close correlation between the depths achieved

by each sinking plume. The explanation of this distinction between the two flow regimes

lies in the balance of thermal and haline effects, which can be inferred from the horizontal
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density profiles from each case (figure 7.10).

This figure shows that the density maxima for the two higher-salinity cases are in

similar positions to the corresponding members of the T9 series, whereas the lower-

salinity thermal bars have progressed much further in the T11 scenario (compare to

figure 7.7). This is clearly due to the massive density gradient on the inshore side of

the thermal bar in case T11, the impact of which is only nullified by salinity inputs of

5 and 10 mgkg−1.

The horizontal propagation of tracer under the T11 thermal regime with various

saline forcings is quite straightforward and is only briefly discussed here. The rapid

movement of the thermal bar case T11 (figure 6.11) is damped quite sharply by the

effects of salinity in cases T11S1 and T11S2, and in the two higher-salinity cases prop-

agation of the thermal bar is totally halted.

Vertical transport characteristics also reflect the differences between the two distinct

flow types found here. Lower salinity cases produce small increases in vertical transport

over T11 but these are limited by the travelling nature of the thermal bar in addition to

the usual buoyancy effects. Higher salinities produce deeper plumes with similar effects

to those noted in the T9 series, albeit with a slightly shallower maximum depth as a

result of the warmer inflow.

7.3 Simulation T7

The dynamics of the saline T7 simulations are the simplest of all, due to the fact that the

T7 thermal bar is a boundary sinking current even before the addition of any riverine

salinity. Figure 7.11 shows that the depth of sinking is slightly deeper than that of T9

simulations, which is expected because the cooler inflow of T7 cases has to sink further

to provide the same compensating upwards buoyancy as T9.

Density plots show why the dynamics of all T7 simulations are so similar, and only

differ in the speed of flows in the circulation; the density maxima are all in the same

place but are of varying magnitudes. All cases are sinking gravity currents because the
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density gradient inshore of the thermal bar is not sufficient to overpower the offshore

density gradient and move the thermal bar. In the extreme case T7S10 it can be seen

that the effects of salinity are so strong compared to thermal effects that the density

monotonically decreases away from the river inflow.
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Figure 7.11: Streamlines for each saline T7 case after 2 days: (a) T7S1, (b)
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Horizontal tracer transport is predictably trivial in that plots which are a more

extreme version of figure 7.8(a) are obtained. Vertical transport is also surprisingly

close to results from the T9 scenario, with a slight increase in the maximum depth of

downwelling as mentioned above. Neither plot is sufficiently original to merit inclusion

in this study.
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Chapter 8

Results - Small Lake Dynamics

While the deep lake model in the previous study of the riverine thermal bar allows

interesting conclusions to be drawn about the maximum plume sinking depth and ther-

mobaric effects, its large domain and relatively fine resolution requires some drastic

assumptions to avoid excessive demands on computational power. In contrast, this

chapter details the results of a more sophisticated riverine thermal bar simulation in a

smaller lake section, nominally representative of the South Thompson River inflow to

Kamloops Lake in British Columbia. In this way it is possible to test and extend the

validity of results in chapters 5 - 7 with the resources available to this study.

The main advantage of studying the thermal bar in a smaller domain is the longer

simulation time scales which are possible, enabling a model of the spring riverine thermal

bar in Kamloops Lake throughout the majority of its lifespan. This longer simulation

timespan is sufficient for a study of the interaction of the riverine thermal bar dynamics

with the spring plankton bloom, and results extending the work of BK to the riverine

case are presented in the next chapter.

Running each simulation for a longer period of time brings into question several

assumptions made in the previous study of Lake Baikal, so the code is modified to cope

with the removal of these simplifications, as fully described in section 2.1. Adopting the

latitude and angle relative to north of the centreline of Kamloops Lake, coriolis forcing is

now included in the momentum equations. In addition, surface heating of the river and

lake will become important to the calculation of temperature gradients controlling the

thermal bar, so a heat flux of Qs = 170 Wm−2 is applied to the lake surface throughout
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the simulation, while the river inflow is warmed by 0.2◦C for every day of simulation

(Carmack 1979). Another benefit derived from the consideration of a shallower domain

is the increase in lake width which is possible. The lake in this study is taken to be 10

km wide accordingly, and the domain is also given a sloping river delta as the results are

viewed as more of a realistic case study than the abstraction of the previous chapters.

Dynamical results of the reference shallow-lake simulation K are presented first,

and then the consequences of a range of alterations to the model are studied. Effects

of salinity and thermobaricity are also discussed, and the overall transport of riverine

substances is illustrated to provide a complete background for the plankton population

studies in chapters 9 and 10. Finally, the consequences of this work are discussed with

reference to the deep-lake findings of earlier chapters. Throughout this chapter all

velocity vector plots are shown at the actual grid resolution.

8.1 Background Flow-Field

As detailed in section 2.4.2, the temperature of the river inflow rises above the Tmd after

three days of simulation time and the onset of cabbeling takes place. The progression

of streamline plots in figure 8.1 shows the characteristics of the resulting thermal bar

throughout the 24-day span of the simulation.

This time-series of flow characteristics shows that the nature of the thermal bar is

critically dependent upon the position of the Tmd relative to the river mouth. In the early

stages of the simulation there are steep localised temperature gradients near the inflow,

generating a strong plume which sinks down the boundary (figure 8.1(a)). Conversely,

the widely-spaced horizontal temperature gradients present in the later stages of the

model generate a weak sinking region which is represented by vertical streamlines spread

over several kilometres beneath a horizontal surface flow directed away from the river

mouth (figures 8.1(b) and (c)). Studies presented in section 8.2.2 indicate that the

development of coriolis forces may also be partly responsible for the width of this sinking

region, through a weak downwards forcing inshore of the surface Tmd.
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Figure 8.1: Progression of streamlines in simulation K : (a) 8 days, (b) 16

days, (c) 24 days.

Following the tradition of earlier thermal bar analyses, the above description of the

evolution of this flow regime is related to plots of the near-surface density profile, shown

in figure 8.2, which illustrate the temperature-based arguments above. Initially the

density variation is confined to a very narrow area, but after 20 days the region of water

containing the horizontal density gradient inshore of the Tmd is nearly 3 km wide.

It can be seen that the river’s density falls rapidly as the simulation proceeds, while

the lake’s density increases towards the maximum due to the slow warming imposed on

the surface. Thus the density profile around the thermal bar evolves from an evenly-
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balanced peak after 8 days to a steep one-sided density gradient after 20 days. Results

of the simulation are thought to lose accuracy after 24 days as the effects of the arbitrary

outflow condition become important once the thermal bar approaches the half-way point

of the lake (see section 2.4.3).
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Figure 8.2: Horizontal density distribution at 5 m depth throughout simula-

tion K.

This progression allows us to clarify the discussion by loosely defining three stages

of thermal bar development, each roughly corresponding to a particular thermal case in

the previous deep-lake chapters. These three stages are defined as follows:

Sinking Boundary Plume (days 3 - 8): density gradient is larger offshore of the

thermal bar (density maximum) than inshore.

Travelling Thermal Bar (days 9 - 16): the offshore density gradient is smaller than

the inshore gradient but is still large enough for a slowly-moving double-cell cir-

culation to be present.

Surface Gravity Current (days 16 - 24): the inshore density gradient is so much

larger than the offshore gradient that a strong horizontal surface current is gener-

ated. Cabbeling and sinking is present at the nose of this surface intrusion but is

weakened considerably.

Each case is discussed individually in the following sections.
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8.1.1 Sinking Boundary Plume

Flow patterns after 6 days are representative of dynamics of a thermal bar plume which

flows down the near-river boundary (figure 8.3). Since mixed river and lake water is

always denser than the ambient lake during this stage (see figure 8.2), the river plume

immediately sinks on entry to the lake in a similar fashion to case T7. River water is

quickly advected down the slope to the bed of this shallow lake and a powerful circulation

cell is induced nearby. The steep density gradient offshore of the Tmd causes strong flows

towards the river near the surface which delay the propagation of the thermal bar.
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Figure 8.3: Velocity vectors and T = Tmd line for case K after 6 days of

simulation. The vertical line marks the position of the profile in

figure 8.6.

8.1.2 Travelling Thermal Bar

As the inflow temperature continues to rise, the density gradient inshore of the thermal

bar grows and starts to move the thermal bar plume away from the boundary, forcing

the sinking to take place over a broader region. Surface heating also weakens the den-

sity gradient offshore of the thermal bar, so that the delaying return flow at the surface

slackens considerably. The situation after 12 days of simulation time is a good illustra-

tion of the travelling thermal bar stage, with a substantial stable region inshore of the
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Tmd and a slightly weakened downwelling spread over a wide area (compare figures 8.3

and 8.4(a)). Dense descending waters are formed at the position of the T = Tmd line

throughout the depth of the lake, including the waters beneath those shown in figure

8.4(a).
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Figure 8.4: Properties of simulation K after 12 days: (a) velocity vectors and

T = Tmd line (the vertical line marks the position of the profile

in figure 8.6), (b) isotherms and T = Tmd line.

In contradiction to the deep-lake results, coriolis forcing ensures that there is no

circulation inshore of the riverine thermal bar during this stage, a feature which is

discussed in great detail in section 8.2.2 below. This result agrees with the conceptual

model and observational data of the riverine thermal bar in Kamloops Lake (Hamblin
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& Carmack 1978, Carmack 1979). The localised upwelling and ‘arrested thermocline’

inshore of the thermal bar reported by Carmack (1979) do not take place until later in

the spring, so that unfortunately the temporal and spatial scales of these phenomena

are too small for the present study.

Isotherms in figure 8.4(b) reveal that even in this relatively shallow lake the flow is

slightly affected by the decrease in the Tmd with depth. As the T = Tmd contour differs

from the 3.96◦C isotherm (the Tmd at p = 0 and S = 100 mgkg−1) significantly at depth

the decrease in the Tmd clearly affects the buoyancy forcing in this simulation. This

observation is pursued further in a full study of the effects of thermobaricity presented

in section 8.3.

8.1.3 Surface Gravity Current

Velocities after only 20 days are selected to illustrate the behaviour of a cabbeling plume

at the nose of a gravity current on the surface of the lake, although this flow regime

actually continues until the thermal bar nearly reaches the outflow region. Vectors in

figure 8.5 show that the former situation of downwards flow between the boundary and

T = Tmd line persists until this time, but the most important feature of the circulation is

the rapid surface current on the inshore side of the thermal bar. This horizontal current

is two orders of magnitude larger than the downwelling (at O(10−2) ms−1 and O(10−4)

ms−1 respectively), and is responsible for moving the Tmd line swiftly across the lake.

By this time the thermal bar is almost 3 km from the river mouth, and horizontal

temperature gradients are weakened to such an extent that the buoyancy forces, which

attempt to compensate density differences by acting in proportion to their magnitude,

are much weaker. This slackening of forces results in a much slower downwelling. A

progression of vertical velocity profiles from a section which is taken as close as possible

to the centre of each thermal bar plume shows this weakening clearly (figure 8.6). It

seems that after 20 days the lake’s circulation has switched from diverting most of the

river through the depths of the lake to mixing inflow water throughout the region behind

the thermal bar. This is an intermediate stage in the typical spring succession, since

the disappearance of the thermal bar marks the onset of summer stratification and the

short-circuiting of river water across the surface of the lake (Carmack 1979).
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Figure 8.5: Velocity vectors and T = Tmd line for case K after 20 days of

simulation. The vertical line marks the position of the profile in

figure 8.6

   0

  20

  40

  60

  80

 100

Depth (m)

-6  0-2-4

w (  10   ms   )  -4       -1

6 days

20 days
12 days

Figure 8.6: Vertical velocity in thermal bar plumes for case K after various

simulation times. The position of each profile is marked in figures

8.3, 8.4(a) and 8.5.

138



8.2 Effects of Model Improvements

If the earlier discussion of Lake Baikal is to be compared in any way to the results of

this long-term simulation, it is important to assess the contribution of factors which are

not included in the former model but which are required in the latter for accuracy. To

this end the effects of insolation, rotation, and bathymetry are discussed in this section.

8.2.1 Surface Heat Flux

An important development of the basic riverine thermal bar model is the introduction

of an increasing lake temperature via the surface heat flux Qs. Importantly, introducing

surface heating at a realistic value for Kamloops Lake should not shift our attention away

from the riverine thermal bar, since the thermal structure of this lake is dominated by

riverine fluxes (Carmack et al. 1986). While the results of the model reflect this riverine

dominance (see, for example, the isotherms in figure 8.4(b)), surface heating still has a

significant influence on the thermal bar phenomenon.

Figure 8.2 clearly shows the increasing lake density offshore of the thermal bar which

results from a temperature increase in this region. As the inshore density decreases

throughout the simulation, the surface heat flux therefore quickens the development of

uneven density gradients on either side of the thermal bar and hastens the progression

through the three flow stages discussed above. This effect is intensified by the thermal

bar’s role as a vertical boundary between stable and unstable regions. The stable area

on the inshore side of the Tmd warms more rapidly under the same heat flux due to a

decreased vertical thermal diffusivity, thus widening even further the anomaly between

density gradients on either side of the maximum. The effect of surface heating of the

inshore region is evident from the temperature maxima of figure 8.7(a), which are slightly

warmer than the river inflow in the later stages of the simulation. These predicted

thermal profiles are strongly reminiscent of near-shore measurements in Lake Ontario

by Gbah & Murthy (1998).

Figure 8.7(b) shows temperature profiles from a test case, KH, in which the model

is similar to case K but with the surface heat flux removed. Comparing the profiles

illustrates the effect of surface heating on the temperature distribution around the Tmd.
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These plots also show that the thermal bar propagates more quickly when under the

influence of a surface heat flux, because the additional heat input to the lake (which has

a more profound effect on the stable region inshore of the density maximum) increases

the amount of water warmed to above the Tmd in a given time. In addition, heating of

the unstable waters in the open lake reduces the density gradient offshore of the Tmd

and thus weakens the return flows responsible for delaying the horizontal spreading of

warm river waters.
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Figure 8.7: Temperature profiles 5 m from the surface throughout each sim-

ulation: (a) case K, (b) case KH.

8.2.2 Coriolis Forces

In order to examine the effects of coriolis force on the dynamics of simulation K, an extra

simulation is introduced, KC, in which coriolis forces are neglected. By explaining the

140



differences between cases K and KC with reference to the coriolis forces in simulation K

it is then possible to scrutinise the effects of the Earth’s rotation on the riverine thermal

bar.
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Figure 8.8: Dynamics of case KC after two simulation times: (a) velocity

vectors and T = Tmd line after 6 days, (b) streamlines after 24

days.

Figure 8.8 shows the dynamical behaviour of case KC at two stages of the simulation,

revealing that the sinking velocities are an order of magnitude larger than those of case

K, and have reached unrealistic levels on the basis of observations discussed in section

1.3. It is also clear from a comparison of these plots with figure 8.1 that the propagation

rate of the thermal bar is initially slightly increased and then massively reduced by

coriolis forces, and that the presence of a circulation (i.e. upwards motion) on the
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inshore side of the thermal bar plume is suppressed by coriolis forcing. With reference

to the formulation of components of the coriolis force (as detailed in chapter 2), each of

these observations is dealt with seperately below.

An increase in velocity in the coordinate directions contained in the two-dimensional

section could be expected with the neglect of coriolis, because the thermal buoyancy

forcing remains the same while transfer of momentum to the velocity component normal

to the section is removed. In figure 8.9(a) the coriolis forcing in the normal direction is

plotted for case K, which gives a good indication of how the familiar two-dimensional

riverine thermal bar drives flow in the alongshore direction.
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Figure 8.9: Characteristics of the coriolis forcing in case K after 6 days of

simulation: (a) component normal to section (×10−6 ms−2), (b)

velocity normal to section (×10−2 ms−1), (c) vertical component

(×10−6 ms−2), (d) horizontal component (×10−6 ms−2).

The figure shows that the converging flows near the surface Tmd cause a reversal
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in this forcing near the position of the thermal bar, with flows accelerated ‘out of the

page’ (in the negative y-direction) offshore of the thermal bar and ‘into the page’ inshore

of the thermal bar. The resulting v-velocities, shown in figure 8.9(b), show a similar

pattern, implying that these forces are persistant, but with an increased dominance of

the offshore velocity in the negative y-direction.

Plots of the other coriolis terms from simulation K after 6 days show that in the area

of interest, the vertical component is acting upwards (figure 8.9(c)) and the transverse

component (in the x-direction) is acting away from the shore (figure 8.9(d)). A close

examination of the formulation of these coriolis components (equations (2.2) - (2.4))

reveals that both of these effects are consistent with a strong velocity directed in the

negative y-direction. Therefore, the coriolis-derived generation of velocities normal to

the section in response to the buoyancy forcings of the thermal bar initially causes the

sinking velocity to decrease and the horizontal propagation rate to increase. Neglecting

coriolis therefore causes the observed strengthening of descending flows and a slackening

of the horizontal propagation rate in the early stages of simulation KC.

A striking feature of simulation KC is that it has a circulation cell inshore of the

thermal bar while K has a uniformly sinking region between the inflow and the thermal

bar plume throughout the simulation. Vertical velocity in the non-coriolis simulation

reponds solely to horizontal variations in buoyancy forcing and has very localised flows

accordingly, while vertical velocity in simulation K is influenced by all of the other

velocity components in its neighbourhood via coriolis forcing. Once the thermal bar has

moved away from the inflow, the near-shore region is allowed to rise in simulation KC as

it feels no downwards buoyancy forcing, whereas it experiences a downwards forcing in

simulation K as an ultimate result of the momentum transfer of the velocity component

perpendicular to the section.

In figure 8.10, an examination of the coriolis forces after 12 days explains this process.

Horizontal flow inshore of the thermal bar causes a coriolis forcing in the positive y-

direction (figure 8.10(a)), which generates a corresponding flow (figure 8.10(b)). This

result is in agreement with many experimental and theoretical studies of Kamloops Lake,

where a deflection to the right is often observed in the spring river plume (St.John et al.
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1976, Hamblin & Carmack 1978). This effect on the horizontal flow leads to a negative

vertical coriolis forcing over most of the near-river region (figure 8.10(c)), causing a weak

downwelling inshore of the thermal bar.
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Figure 8.10: Characteristics of the coriolis forcing in case K after 12 days of

simulation: (a) component normal to section (×10−6 ms−2), (b)

velocity normal to section (×10−2 ms−1), (c) vertical component

(×10−6 ms−2), (d) horizontal component (×10−6 ms−2).

Interestingly, flow in the positive y-direction (into the page) causes a coriolis forcing

in the positive x-direction, i.e. towards the shore (figure 8.10(d)). This explains why

the horizontal propagation of the non-coriolis case KC eventually overtakes that of case

K. Initially the coriolis forces act to increase the horizontal spreading of warm river

water (figure 8.9(d)) and the propagation of the thermal bar is encouraged, but later

the coriolis forces suppress the horizontal movement by acting towards the river (figure

8.10(d)) and the non-coriolis plume of case KC propagates more quickly.
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8.2.3 Realistic Bathymetry

The intention of this section is to test the effects of a sloping river delta on the results

generated by the riverine thermal bar model. This analysis is performed by comparing

case K with a similar model, KB, which is identical apart from the section bathymetry,

which is taken to be a 10 km × 150 m rectangular box.

Velocity vectors from simulation KB after 12 days (figure 8.11) show remarkably

similar results to vectors from simulation K after the same time period (figure 8.4(a)).

In fact, the top 20 m of each domain are virtually identical to each other, although the

sloping domain marginally increases the horizontal propagation of the thermal bar.

There is, however, a significant difference between the dynamics of the thermal bar

plumes at depth, and the difference in curvature of the T = Tmd contours provides a

useful clue as to why this is. Unlike case K, the water sinking beneath the warm river

intrusion in case KB is not channeled into the thermal bar plume by a sloping boundary.

This channeling has the obvious important consequence of directly strengthening the

plume in simulation K, but also accounts for the difference in downwards transport

of heat which is responsible for the variation in curvature between the two T = Tmd

contours.
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Figure 8.11: Velocity vectors for case KB after 12 days of simulation.
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8.3 Effects of Thermobaricity

In chapters 6 and 7 it is shown that thermobaricity has a vitally important influence on

the vertical movement of waters in the thermal bar plume of a deep lake. In shallower

lakes such as Kamloops, thermobaricity is usually neglected as the vertical variation of

the thermal expansion coefficient is assumed negligible due to the small magnitude of

the Tmd variation between the lake surface and bed. However, thermobaricity is fully

resolved in this study and it is thus important to examine its effect, both to justify its

inclusion and for comparison of these results with the deep lake studies.

Comparing velocity vectors from the reference simulation K with those from a new

simulation, KP, which has no thermobaricity (figures 8.4(a) and 8.12 respectively), im-

mediately reveals the strong influence of thermobaricity on the vertical position of the

T = Tmd line. Whereas the T = Tmd contour in simulation K is shifted towards cooler

water at depths between 40-80 m as a result of the decrease in the Tmd with depth, in

simulation KP it follows the 3.96◦C isotherm.
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Figure 8.12: Velocity vectors for case KP after 12 days of simulation.

Close examination of the velocity vectors shows that sinking motions are slightly

stronger in case KP, despite the fact that the simulation K plume sinks down the

T = Tmd line for longer due to its thermobaricity-induced curvature. This is explained
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by consideration of the buoyancy change ∆B, which reveals that the negative change in

buoyancy is larger in case KP and does not decrease with depth (not shown). Although

the direct effects of this small difference in ∆B are small, the extra advection of heat

down the sloping boundary it causes throughout the early stages of simulation KP

produces larger horizontal temperature gradients at depth which culminate in stronger

descending flows.

This discussion proves that thermobaricity has an effect in shallower lakes, but that

it is probably negligible in most modelling of lakes with a comparable depth to Kamloops

when vertical mixing is not the main object of the study. Slight differences in vertical

motion are observed but these are only important over relatively long time periods, and

it is concluded that thermobaricity need only be included in relatively detailed shallow

lake models which are seeking quantitative results. Thermobaricity is not neglected

here as the model is designed for the study of vertical motions, and analogies are drawn

between Kamloops and Lake Baikal, in which thermobaricity is much more important.

8.4 Effects of Salinity

Salinity data from Kamloops Lake is relatively difficult to find, even in comparison with

Lake Baikal, but it is clear from the small discussion of conductivity data by St.John

et al. (1976) that the salinity of Kamloops Lake and the South Thompson River have a

significant annual variability, peaking in late winter and troughing in the early-summer

freshet period. In summer, the river salinity can actually sink below that of Kamloops

Lake, but during the period which is modelled here the salinities appear to be relatively

homogeneous in Kamloops Lake and slightly higher in the South Thompson River.

The salinities added to the river in this study are considerably larger than those

added to the Selenga River in previous chapters. This is necessary for the examination

of saline effects because the wider range of temperatures involved in the longer time-

period of this study means that salinity is less important in the calculation of buoyancy

forcing. Saline cases described in this section range from KS5, with a reasonable 5

mgkg−1 salinity added to the river, to case KS50, which has an unrealistically large 50

mgkg−1 (50%) increase applied to the river salinity.
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The necessity of introducing larger riverine salinities is highlighted by the large

thermally-induced variation in density seen in the horizontal profiles of figure 8.13. It is

obvious that even with relatively large riverine salinities (up to 20 mgkg−1), the change

in density due to haline effects is a fraction of the total spatial variation due to thermal

conditions. However, with a large enough riverine mineral loading the density profiles

show similar trends to results from chapter 7, with an increase in the maximum density

and offshore density difference and a reduced density difference inshore of the thermal

bar.

These observations of thermal dominance over haline effects are borne out by the

velocity vector plots from the saline simulations. Contrary to expectations, figure 8.14

shows that the downwelling is very resistant to saline influence, and that a 50 mgkg−1

increase in riverine salinity is necessary to force a qualitative change in the flow field.

The most obvious effect of the introduction of salinity gradients is the slight decrease

in horizontal propagation of the T = Tmd line near the surface (figure 8.14). This

straightens the T = Tmd contour throughout the depth of the lake, which increases

the plume velocity because the water is accelerated by the thermally-derived buoyancy

forces for longer as it sinks. Sinking within the thermal bar plume therefore becomes

slightly stronger and is concentrated into a narrower region.
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Figure 8.13: Density profiles for all saline variants of case K after 12 days at

5m depth.

148



Plots of ∆B, ∆BT and ∆BS clearly state that thermal buoyancy change dominates

haline effects in all simulations apart from the most saline, KS50, which also has the only

really significant change in flow regime (not shown). It therefore takes a riverine salinity

increase which is unrealistically large (according to St.John et al. (1976)) to seriously

influence the dynamics of the spring thermal bar in Kamloops Lake, and salinity is

assumed to be negligible in this shallow-lake model.
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Figure 8.14: Velocity vectors and T = Tmd contour for saline variants of K

after 12 days: (a) case KS10, (b) case KS50.

It should be emphasised here that large salinities have not been considered in great

detail in this study as the dynamics of primary interest are those dominated by buoy-

ancy forcings dependant on local temperature variations relative to the Tmd. In any

case, Kamloops Lake is a relatively fresh lake which is known to be almost completely

dominated by the large temperature gradients found in Spring (Carmack 1979). How-

ever, salinity distributions may also be extremely important in determining lake flows,
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as shown in the study of Lake Baikal, and should not be dismissed on the basis of this

study of Kamloops Lake.

8.5 Transport of Riverine Substances

In this section the various choices made in the formulation of simulation K are assessed

in terms of the resulting transport of riverine substances. The movement of river-borne

matter is worthy of study in its own right as an indicator of pollution, oxygenation, etc.

but in this section the analysis is also regarded as a preliminary result for the plankton

studies of chapter 9.

The plankton study is an attempt to quantify the effects of the riverine thermal bar

on the spring phytoplankton growth in Kamloops Lake. A study of the riverine tracer

distribution is therefore required in order to quantify the effects of plankton boundary

conditions and thus decide whether the plankton model is predicting effects caused by

the inflowing river, the dynamics of the thermal bar, or biological factors controlling

plankton interaction.

8.5.1 Chosen Simulation

Tracer characteristics in the chosen simulation K follow a straightforward progression

which characterises the flow-field throughout the model run (figure 8.15). The river-

ine tracer initially sinks down the boundary but then spreads horizontally across the

lake in reflection of the change in flows within the thermal bar, which is described in

section 8.1. The contours of tracer concentration switch accordingly from a vertical

structure with transport predominantly downwards, to a horizontal formation in which

high concentrations of the tracer-rich river water float on the surface of the lake.

The vertical transport which takes place early in the simulation (figure 8.15(a))

means that river-borne matter will not initially travel far in the euphotic zone before

sinking, heralding an initial period of low influence of riverine conditions on plankton

growth. However, after 20 days of simulation there is an extensive near-surface region

which contains 90% river water (figure 8.15(b)), indicating that the plankton productiv-

ity in this area will eventually be heavily influenced by the riverine boundary conditions.
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Figure 8.15: Contours of tracer concentration in simulation K : (a) 6 days,

(b) 20 days.

8.5.2 Comparison With Test Cases

Plotting the horizontal movement of the surface Tmd signature, figure 8.16 shows a rea-

sonable similarity in the rate of horizontal propagation of the thermal bar between most

of the different cases. Unsurprisingly the neglect of thermobaricity in this shallower lake

has very little effect on the horizontal movement of the thermal bar, but unexpectedly

this plot shows that the influence of bathymetry is also rather small. After 30 days of

mixing the position of the riverine thermal bar in a rectangular lake is within 300 m

of the position of the same phenomenon in a sloping river delta, which highlights the

riverine dominance of thermal effects in these simulations. The progression plot also

confirms that the surface heat flux has a significant role in increasing the horizontal

propagation of the thermal bar by warming more water through the Tmd.

By far the most important feature of this horizontal progression plot is the qualitative

change in thermal bar behaviour which may be induced by the addition or neglect of

coriolis forces. This result illustrates the findings of section 8.2.2, where a direction
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Figure 8.17: Contours of tracer concentration after 20 days of simulation: (a)

KB, (b) KC.

reversal of the dominant velocity component normal to the section reverses the coriolis
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force acting in the x-direction. This component is found to accelerate the movement of

the thermal bar initially but impede it later on, producing the near-linear propagation

curve of simulation K out of the constantly accelerating profile of simulation KC.

The vertical tracer transport of selected trial simulations is examined through con-

tours of riverine tracer, plotted in figure 8.17, which are then compared to figure 8.15(b).

Contours of tracer from cases KP and KH are not shown as they differ very little from

those of case K, with the vertical transport slightly increased in both cases.

The results of figure 8.17(a) show that the rectangular-box domain has an extremely

similar distribution of tracer to case K after 20 days because the extra downwards

advection predicted in this case has little effect upon the tracer contours. Unsurprisingly,

figure 8.17(b) also shows that the neglect of coriolis force causes the most significant

changes to the transfer of riverine tracer, with qualitative changes in the character of

the tracer distribution. The stronger return flows which initially delay the thermal bar

clearly produce a significant vertical mixing of river water into the lake, which accounts

for the riverine tracer content of over 20% everywhere in the domain after 20 days

(although not clear from figure 8.15(b), tracer concentrations decrease to less than 5%

away from the river after 20 days in simulation K ). Later on the strong horizontal flows

of the coriolis-free simulation effectively mix the riverine tracer across the surface of the

lake in the thin, stable surface layer shown in figure 8.8(b).

8.6 Consequences for Deep-Lake study

The results of model testing presented in this chapter show that the thermal bar dynam-

ics are quite sensitive to several characteristics of the model, notably coriolis forcing.

The aim of this section is to justify, with hindsight, the choices made in the deep-lake

thermal bar modelling work of previous chapters. Reasoning must be given for the

choices made for each of the model features tested above apart from thermobaricity,

which has already been proven to be crucial in the Lake Baikal study.

If the results of saline thermal bar simulations in a deep lake are to be accepted, it

must be explained why the thermal bar dynamics are so insensitive to the same levels of
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salinity in this Kamloops Lake study. The reason for this is the difference in magnitude

and variation of the thermal conditions in the vicinity of the thermal bar. In the deep-

lake simulations the propagation of the thermal bar is governed by an extremely delicate

balance between temperature differences of (at most) 0.2◦C offshore of the thermal bar

and 2◦C inshore of it. In contrast, the offshore thermal difference after 4 days in the

Kamloops Lake model is 1.5◦C and the inshore difference is 1.8◦C after 12 days.

This explains why the propagation rate generally decreases with time in the deep

lake simulations and increases in the Kamloops Lake model; inshore gradients slacken to

match those offshore as the thermal bar propagates in the former case whereas surface

heating and continually rising river temperatures increases the dominance of inshore

density gradients in the latter case.

However, this difference in the balance of density differences also means that the

propagation rate of the thermal bar in the deep-lake thermal scenario is more vulnerable

to the effects of salinity. Tiny increases in salinity (e.g. 5 mgkg−1) will only alter the

water’s density by a fraction (see figures 7.7 and 8.13) but in the deep-lake case this

change will add to the density gradient offshore of the thermal bar and decrease the

density gradient inshore, upsetting the original balance of forces and thus halting the

thermal bar’s propagation. In Kamloops Lake, the density gradient offshore of the

thermal bar is so large already (due to a much lower initial lake temperature) that

this increase has virtually no effect upon the dynamics. The same can be said for the

temperature gradients inshore of the thermal bar, as they soon grow so large that the

haline effects are inconsequential. At the only time when the thermal gradients are small

enough to be affected by salinity, in the early stages of simulation K, the thermal bar is

already a sinking boundary plume.

The salinity increase is therefore less important in Kamloops Lake because of its

different thermal regime, which in no way detracts from the results of the deep-lake

simulation. This finding implies that after the period of validity of the Baikal simulations

the Selenga River would warm up and the (saline) thermal bar would propagate out

into the lake, but the predicted flows and increased vertical penetration of our modelled

thermal bars would still take place. In any case there is no way that the deep lake models
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could be improved without better data coverage and more substantial computing power.

Comparing models with and without a realistic surface heat flux provided surprising

results about the importance of surface heating in modelling a lake whose circulation

is supposedly controlled by river-lake density anomalies. As described earlier, the main

effect of surface heating is to increase horizontal propagation of the thermal bar by

warming more water to above the Tmd and altering the balance of density gradients

about the thermal bar. However, it is proposed that the deep-lake studies lose little

from the neglect of this factor because the timespan of the deep simulations is so short

that there is little time for surface heating to make a significant difference (see figures

8.7(a) and (b)).

The most significant difference between the two thermal bar simulations is the inclu-

sion and neglect of coriolis forces. As a result of the introduction of a velocity component

normal to the section, coriolis is found to have a profound effect on the dynamics of the

thermal bar in Kamloops Lake, which prompts a justification of the validity of the

coriolis-free work of the previous chapters.

The main reason for neglecting coriolis forcings in the deep lake is the timespan of

each simulation, since the results of figure 8.16 show that the effects of coriolis force vary

according to the length of the model run. The coriolis force takes 10 days to establish

a velocity in the y-direction which then proceeds to modify the thermal bar dynamics,

producing an intermediate stage of coriolis spin-up which would be prevalent for all of

the simulation in each short model of the deep lake. Coriolis forcing is therefore not

appropriate in the deep-lake studies as it would be in a state of adjustment from the

initial conditions for the whole simulation.

It is also important to bear in mind the possible consequences of adding coriolis

forces to the deep-lake study. Coriolis forcing would interact with buoyancy forces in

every facet of the simulation, modifying the effects of river temperature, thermobaricity,

and salinity. Since these effects would mask the underlying buoyancy-driven flows which

are the main object of study in the deep lake, a study of coriolis on the deep lake section

is not pursued in this work.
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The introduction of a sloping bathymetry has surprisingly little effect on the flow

regime of the thermal bar, producing a small increase in horizontal propagation rate

and a slight decrease in the maximum sinking depth. This implies that the dynamics

of a river-dominated thermal bar are relatively indifferent to topography, which gives

us some confidence that the conclusions from the deep-lake work would not be seriously

affected by the introduction of a realistic Selenga delta bathymetry.

The results of all of the test simulations detailed above indicate that the extent

of vertical mixing in the deep lake section would be increased by coriolis forces and

decreased by surface heating and a realistic bathymetry, so that there would be some

balance of these effects in a model resolving all features. Horizontal propagation of the

thermal bar would be increased by all of the factors tested, since the coriolis force would

act away from the river mouth on the short timescale of the deep lake studies.

The conclusion of this chapter must be that deep-lake studies of the riverine thermal

bar are not yet complete and that modellers with access to greater computational re-

sources could extend the work of the previous chapters significantly. However, no major

reason is found to reject the basic findings of chapters 5 - 7, which are an important

first step towards a deep-lake model which is as detailed as the Kamloops Lake model

of this section.
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Chapter 9

Results - Plankton Modelling

It is well-known that the flow patterns associated with the thermal bar can have an

important influence on the plankton ecosystem of a temperate lake (Moll et al. 1993,

Likhoshway et al. 1996, Parfenova et al. 2000), so this chapter is dedicated to analysis of

results from a simple plankton model which is coupled to the Kamloops Lake dynamics

described in the previous chapter.

In a study which is fully described in chapter 1, Botte & Kay (2000) (hereafter

referred to as BK) qualitatively reproduced the Likhoshway et al. (1996) observations of

plankton distributions around a spring thermal bar in Lake Baikal using the simple N -

P -Z formulation of Franks et al. (1986). On the much shallower Kamloops Lake section,

this chapter represents an extension of that work to the case of a riverine thermal bar.

For comparative purposes, the plankton model is unchanged from that of BK in this

chapter. Apart from the differences in thermal regime and resulting dynamics between

the two studies, the only difference is the effect of the river inflow boundary conditions

on the ecosystem model.

The chapter proceeds with a full discussion of model results and examines in de-

tail the influence of several characteristics of the riverine thermal bar on the ecosystem

model. It is particularly important to quantify the effects of riverine boundary con-

ditions, so a sensitivity study is performed with various states assigned to the river

ecosystem which flows into the lake. Results are discussed from cases with a variety of

riverine nutrient levels, qualitatively representing the natural variation in discharge and

nutrient loading which takes place in the South Thompson River in spring (St.John et
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al. 1976).

This study concludes that the simplified Franks et al. (1986) model produces some

slightly spurious predictions of the ecosystem state, although it is impossible to rule

these predictions out with the current sparsity of available data. In chapter 10 a more

sophisticated plankton model is adopted which contradicts some of the most suspicious

results of the Franks et al. (1986) model. Comparison between models is feasible be-

cause all plankton model components are expressed in common units of mmol N m−3.

These plots therefore represent the distribution of the available Nitrogen contained in a

particular model component at a certain time.

9.1 Temporal Evolution of Plankton Population

The basic simulation of this chapter involves the model of Franks et al. (1986) under

riverine boundary conditions of NR-PR-ZR = 4-1-1 mmol N m−3 (as described in section

2.5.1), and is therefore referred to as simulation F. The discussion of plankton behaviour

is centred on three stages of the simulation, each roughly analogous to one of the phases

of thermal bar dynamics described in sections 8.1.1 - 8.1.3. However, in this chapter

the three chosen times are evenly spaced in order to give an impression of the temporal

evolution of plankton in the vicinity of a riverine thermal bar.

9.1.1 8 days of simulation

After 8 days of simulation the thermal bar is positioned about 600 m from the river

inflow, so that the majority of the sinking takes place down the boundary (figure 8.1(a)).

The phytoplankton shows significant growth near the surface and in the vicinity of the

thermal bar (figure 9.1(a)), but the zooplankton hardly reacts at all with the other

components of the plankton model and seems to be totally dominated by the riverine

boundary conditions (figure 9.1(b)).

Closer inspection of the contours of phytoplankton biomass reveals that the centre

of the bloom is actually at the position of the Tmd, slightly offshore of the stagnation

point above the descending plume of the thermal bar. A later analysis in section 9.2

shows that this is a consequence of the fixed riverine plankton boundary conditions, and
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has nothing to do with nutrient concentrations; since PR is set to 1 mmol N m−3 the

phytoplankton concentration decreases sharply towards this level in the region inshore

of the thermal bar.

   0

  10

  20

  30

 6.5  7  7.5  8  8.5  9  9.5 10
Distance (km)(a)

(b)

Depth (m)

   0

  10

  20

  30

1.1

1.3

1.5
1.7

1.9

1.5

0.5 0.6

0.7

0.8

0.9

0.4

Figure 9.1: Characteristics of simulation F after 8 days: (a) phytoplank-

ton concentration (mmol N m−3), (b) zooplankton concentration

(mmol N m−3).

Also in figure 9.1(b) we can observe the effects of vertical convection on the plank-

ton distribution, as sinking within the thermal bar plume is strong enough to increase

phytoplankton concentrations near the boundary at depth. A deeper plot than figure

9.1(a) would also show that the upwelling offshore of the thermal bar is sufficiently

strong to decrease phytoplankton concentrations in parts of the open lake by advecting

low-biomass waters upwards.

Although noticeably increased, phytoplankton concentrations at the thermal bar are

still too low to support any significant growth in zooplankton at this stage. In fact the

zooplankton contours show a similar distribution to those of the neutral tracer ϕ which

are shown in figure 8.15, implying that zooplankton source terms are negligible in the
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vast majority of the domain.

9.1.2 16 days of simulation

After 16 days of simulation the thermal bar has progressed much further from the inflow

(figure 8.1(b)), with important consequences for the organisms living in the near-shore

region of figure 9.2. The phytoplankton growth at the position of the thermal bar has

reached bloom levels (figure 9.2(a)), and zooplankton concentrations also now reach

a shallow maximum at the thermal bar, although these quantities could not yet be

described as a bloom (figure 9.2(b)).
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Figure 9.2: Characteristics of simulation F after 16 days: (a) phytoplank-

ton concentration (mmol N m−3), (b) zooplankton concentration

(mmol N m−3).

Comparing the position of the thermal bar with the phytoplankton bloom, it is found

that the highest concentrations of phytoplankton are now inshore of the Tmd. An exact

explanation for this is given in section 9.2.2, but essentially the thermal bar has moved

to such a distance from the river inflow that the low-phytoplankton boundary conditions
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are ineffective against the improved productivity which results from the stable, nutrient-

rich conditions inshore of the Tmd.

The large horizontal gradient in phytoplankton concentration inshore of the bloom

near the thermal bar reflects the continued influence of the riverine boundary conditions

throughout the near-shore region. As water is descending over all of the 2.5 km closest

to the river, phytoplankton concentrations at depth in this region reflect the state of

plankton growth in the surface layer above. As a result of advection down the boundary,

the riverine conditions are instrumental in decreasing the phytoplankton concentration

at depth over a large proportion of the domain beneath the pictured region.

The phytoplankton bloom is now large enough to support mass zooplankton graz-

ing, and the carnivorous population develops accordingly. As discussed in section 9.2.3,

however, there is plenty of evidence to show that riverine boundary conditions outweigh

the discrepancy between mortality and grazing in determining the distribution of zoo-

plankton at this stage. The most convincing evidence of this is that the contours of

zooplankton concentration follow the tendency of neutral tracer concentrations (figure

8.15) more closely than contours of phytoplankton, implying that transport of riverine

zooplankton is more important than the net growth of zooplankton through grazing.

9.1.3 24 days of simulation

The thermal bar is well into the ‘surface gravity current’ stage of its development after

24 days of simulation, with a warm river inflow floating on the stably-stratified waters

inshore of the Tmd (figure 8.1(c)). The phytoplankton are now concentrated into two

distinct blooms which are of a similar magnitude to the previous stage, one at the exact

position of the thermal bar and the other mid-way between the thermal bar and the

river inflow (figure 9.3(a)). The cause of this unusual distribution is later shown to be

nutrient limitation, which impedes growth in the nutrient minimum at the very centre of

the previous single bloom, but allows phytoplankton to grow unrestricted in the higher

nutrient levels on either side.

Figure 9.3(b) shows that the main zooplankton growth takes place between the two

phytoplankton blooms, indicating that zooplankton may promote the formation of a
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double bloom by consuming phytoplankton in the central region of limited nutrient

availability. A combination of nutrient limitation and zooplankton grazing therefore

restricts the phytoplankton bloom in between the Tmd and the stable region located 1.5

km from the river inflow.
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Figure 9.3: Characteristics of simulation F after 24 days: (a) phytoplank-

ton concentration (mmol N m−3), (b) zooplankton concentration

(mmol N m−3).

In both phytoplankton and zooplankton plots it is clear that, by this stage of the

simulation, the interaction of source terms in the plankton model is much more influ-

ential than the effects of riverine boundary conditions. However, a small influence of

the boundary conditions is felt in the depths of the lake as the down-slope convection

of lower values of plankton is clearly still operating (not shown).

9.2 Closer Examination of Plankton Growth

This section is dedicated to explaining the prediction of these plankton blooms by the

simple N -P -Z model employed here. Figure 9.4 shows the state of the model components

at various simulation times along a horizontal profile taken 5 m beneath the surface of
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the lake.
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Figure 9.4: Horizontal N -P -Z profiles at 5 m depth throughout the simula-

tion: (a) 8 days, (b) 16 days, (c) 24 days.

After 8 days of simulation the ecosystem model is only just beginning to evolve and

shows little evidence of interaction with the dynamics of the thermal bar. The phyto-

plankton have grown in a spatially uniform manner, albeit with a shallow maximum

at the thermal bar, and have taken up more Nitrogen than is depleted from the nu-

trient pool, indicating that zooplankton mortality and the river inflow are maintaining

available nutrient levels.

After 16 days of simulation the spring phytoplankton bloom at the thermal bar is

revealed by a doubling in phytoplankton concentrations at the position of the surface
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Tmd. The nutrient pool has been greatly reduced by this bloom, and is now at a level

which will limit any further production in this location. The magnitude of the small

local maximum in the zooplankton concentrations is revealed to be mainly due to the

fixed value of ZR at this stage.

Phytoplankton growth is still nutrient-limited after 24 days, and as the thermal bar

propagates it leaves a large region in its wake which contains virtually no available nu-

trients. With increasing predation from the zooplankton and growth limited by the lack

of nutrients, the phytoplankton bloom at the thermal bar recedes to such an extent that

remaining undulations in the phytoplankton distribution are relatively small throughout

the whole surface layer. In conjunction with the pressures of zooplankton grazing, the

lack of nutrients in the centre of the phytoplankton bloom causes a localised decrease in

photosynthetic production which leads to a trough in the bloom and thus the formation

of the two separate phytoplankton concentration maxima seen in figure 9.3.

9.2.1 Effects of Stability

An important point demonstrated by the work of BK is that the productivity of a

plankton ecosystem is fundamentally dependent upon the effects of stability in the water

column, which can delay the diffusion of phytoplankton away from the euphotic zone

near the lake surface. Since this simple plankton model resolves the dependance of

productivity on phytoplankton biomass and light availability, and the vertical eddy-

viscosity is a function of stability, it is appropriate to study this effect in the setting of

the riverine thermal bar.

BK adopt a stable initial temperature profile which has a band of high-stability

water between depths of approximately 100 - 130 m. As the simulation proceeds, the

surface heat flux forms an area of instability which is confined to the waters above this

stable layer, growing slowly deeper with time until the open lake has an almost uniform

vertical temperature profile. In this way BK are able to compare the effects on plankton

of unstable waters overlying stable waters offshore of the thermal bar against the usual

scenario of stable waters overlying unstable waters inshore of the thermal bar.

In contrast to this, the adoption of a uniform initial temperature in this study means
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Figure 9.5: Contours of stability N 2(×10−5s−1) and profiles of N -P -Z at

various positions in case F after 20 days. Results are studied

after this time to enable a comparison with the results of BK.

that only the stable/unstable interface inshore of the thermal bar may be studied as

the offshore water is already unstable throughout the depth of the lake. In addition,

the stability profile of the region inshore of the Tmd has a rather different structure in

the case of the riverine thermal bar. In BK stability increases monotonically towards

the surface due to the exponential decay of the surface heat source with depth, but in

the riverine thermal bar model contours of N 2 after 20 days of simulation (in figure 9.5)

show that there is a sub-surface stability maximum near the river due to the localised

thermocline generated at the base of the river influx, which has a vertically-uniform
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temperature.

Figure 9.5 shows that stability is a crucial factor in the plankton blooms which

are observed on longer timescales. After 20 days the stable region of the lake is of a

considerable size due to the propagation of the thermal bar, and contours of stability

show that there is a localised stability maximum at a distance of about 2 km from the

river inflow. This surface maximum in the value of N 2 occurs at the position where the

sloping thermocline between river plume and lake water intersects the surface.

Comparing vertical N -P -Z profiles from positions inshore of, at, and offshore of the

thermal bar reinforces the observation that water column stability is critically impor-

tant in determining the productivity of a plankton ecosystem in the vicinity of a riverine

thermal bar. Plankton development offshore of the thermal bar (6.5 km from the ori-

gin) is clearly limited by diffusion of the photosynthesising phytoplankton downwards,

whereas growth at the stability maximum inshore of the Tmd (8.25 km from the origin)

continues until the water is almost completely devoid of nutrients. This is shown to

be due to the high stability of the water column by the close relationship between the

N -P -Z profile and the vertical variation of N 2.

Further proof of the dominance of stability is given by the fact that plankton growth

is more prolific in the stable regions inshore of the Tmd than it is at the stagnation point

above the thermal bar plume (7.25 km from the origin). Despite the converging hori-

zontal transport at the surface Tmd and the influence of low-plankton riverine boundary

conditions on the inshore region, the lesser stability in the vicinity of the Tmd leads to

lower growth rates than inshore.

It is also interesting to note the effects of the subsurface stability maximum on

the N -P -Z profiles. By comparing N -P -Z profiles from positions with and without a

subsurface stability maximum (9.25 and 8.25 km from the origin respectively), it can

be clearly seen that productivity is significantly reduced above the stability maximum

in the former profile due to the decrease in N 2. These inflexions in the N -P -Z profiles

cannot be due to the riverine plankton conditions because reductions in the plankton

concentrations would then be greatest at the lake surface where the mixed water has
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the highest riverine content (as shown in figure 8.15(b)).

The criticism remains that these different profiles, taken at various distances from the

river, are simply a result of the time-varying condition of the lake into which the riverine

plankton components are introduced. Since the lakeward flows dominate it is possible

that variations in these profiles are solely due to differences in the flow-field after various

times, rather than being produced by in-situ stability variations. However, examination

of similar plots after different time periods confirms that the physical mechanisms noted

above are persistently linked with the biological phenomena attributed to them.

9.2.2 Phytoplankton Blooms

A more detailed analysis of the causal factors of the phytoplankton blooms may be

gained by separating the various terms of the phytoplankton transport equation so that

convection and diffusion terms may be compared to the biological interaction terms

contained in SP (equation (2.20)). The range of values attained by each term over a

horizontal profile traversing the entire lake at 5 m depth is given in table 9.1, and some of

the most influential quantities are then plotted in figure 9.6. In this analysis a negative

value implies that the mechanism in question decreases the in-situ concentration of

phytoplankton.

Term in P transport equation Minimum Maximum

Primary production 1 × 10−5 5 × 10−5

Grazing -2 × 10−5 -1 × 10−6

Mortality -5 × 10−6 -1 × 10−6

Vertical diffusion -1 × 10−4 1 × 10−6

Horizontal diffusion -3 × 10−5 8 × 10−5

Vertical convection -1 × 10−6 7 × 10−6

Horizontal convection -3 × 10−5 5 × 10−6

Table 9.1: Range of values of each term in the P transport equation along a

near-surface horizontal profile during the first 24 days of simula-

tion F. All values are mmol N m−3 s−1
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Vertical convection of phytoplankton and phytoplankton mortality are disregarded

in the following discussion as they are an order of magnitude smaller than the leading

terms. Horizontal diffusion is found to achieve its large values simply by transporting

phytoplankton across the large gradients present at the thermal bar plume from the

productive areas inshore of the Tmd to the open lake. In addition, values of horizontal

convection attained in the converging flows near the thermal bar are insignificant in

comparison to those near the river inflow, which are recorded in table 9.1. Therefore only

photosynthetic production, zooplankton grazing, and vertical diffusion of phytoplankton

are considered in the detailed discussion which follows.
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Figure 9.6: Source terms in the phytoplankton transport equation at 5 m

depth throughout simulation F : (a) photosynthetic production

and position of the Tmd (|), (b) total zooplankton grazing.

A horizontal profile of the vertical diffusion term is not included in figure 9.6 in

the interests of brevity, but the magnitude of vertical diffusion terms listed in table

9.1 reveals it to be of particular importance to this study. A close examination of the
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vertical diffusion term shows that it is generally of the order of 10−5 ms−1, but is locally

increased to O(10−4) ms−1 in the vicinity of the T = Tmd line. A more detailed analysis

shows that this is primarily due to the inflexion in the vertical phytoplankton profile

which is generated by the transition between stable and unstable conditions (see section

9.2.1), but is also attributed to the change in Kv between the unstable waters offshore

of the Tmd and the stable inshore region.

Figure 9.6(a) shows that the primary production has a consistently important in-

fluence on phytoplankton concentration over the whole lake. Growth of phytoplankton

develops steadily at the position of the thermal bar until 16 days have elapsed, when

nutrient limitation at the very centre of the bloom causes a localised reduction in growth

which eventually produces the ‘double-bloom’ phytoplankton distribution.

It is very difficult to quantify the role of zooplankton grazing in the development of

this structure, but a close examination of the Michaelis-Menten factor in the photosyn-

thesis formulation (equation 2.23) confirms that nutrient limitation must be responsible

for actually initiating the depression in the centre of the original phytoplankton bloom.

Nevertheless, zooplankton grazing significantly depletes phytoplankton concentrations

in the region between the two blooms throughout the later stages of the simulation

(figure 9.6(b)).

Observing the position of the primary production maximum in comparison to the

Tmd in figure 9.6(a) allows us to conclude the earlier discussion of the temporal variation

of the position of the phytoplankton bloom with respect to the thermal bar. After 8

days the maximum phytoplankton concentration is found at the positon of the Tmd due

to the sharp decline near the river which results from the inflow boundary conditions,

but after 16 days the blooms are situated inshore of the Tmd because the thermal bar is

far enough from the river for the benefits of the stable stratification inshore to become

apparent.
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9.2.3 Zooplankton Bloom

A similar analysis of the zooplankton bloom in simulation F reveals that comments

relating to all convection and diffusion terms of the phytoplankton transport equation

hold for zooplankton, as indicated by table 9.2, leaving only the two components of SZ to

be discussed (equation 2.21). While mortality solely depends upon zooplankton concen-

trations, grazing is a function of both zooplankton and phytoplankton concentrations,

and profiles of each term in figure 9.7 show that the sharply increasing phytoplankton

concentrations soon lead to an imbalance and net zooplankton growth.
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Figure 9.7: Source terms in the zooplankton transport equation at 5 m depth

throughout simulation F : (a) assimilated zooplankton grazing,

(b) zooplankton mortality.

170



Term in Z transport equation Minimum Maximum

Assimilated grazing 3 × 10−7 2 × 10−5

Mortality −6× 10−6 −5× 10−7

Vertical diffusion −2× 10−5 1 × 10−6

Horizontal diffusion −7× 10−6 2 × 10−5

Vertical convection −1× 10−7 2 × 10−6

Horizontal convection −8× 10−6 5 × 10−6

Table 9.2: Range of values of each term in the Z transport equation along a

near-surface horizontal profile during the first 24 days of simula-

tion F. All units are mmol N m−3 s−1.

Assimilated grazing and mortality are roughly equal for the first 8 days of the sim-

ulation, causing tracer-like zooplankton concentrations (see section 9.1.1), but after 12

days the zooplankton start to show signs of a net increase in biomass. However, it is not

until 20 days of grazing have passed that zooplankton populations start to significantly

exceed riverine concentrations and begin to bloom in their own right.

9.3 Variation of Riverine Boundary Conditions

This section is concerned with the results of alternative simulations in which the state of

the inflowing river ecosystem is varied. In the case of the plankton components PR and

ZR this work is done solely as a sensitivity study of the lake ecosystem to the arbitrarily-

assigned river plankton levels, but the simulations with a varying NR also have a physical

justification in that the South Thompson River shows a significant variability in available

Nitrogen on both spring-warming and interannual timescales (St.John et al. 1976).

9.3.1 Nutrients

As the observed nutrient limitation of phytoplankton growth could be significantly de-

layed by the nutrient-rich inflow, it could easily be assumed that altering the value of

inflow nutrients NR will have a drastic effect on the resulting plankton growth. This

hypothesis is tested by the introduction of simulations F30 and FM30, which have NR

increased by 30% and decreased by 30% respectively (see appendix A).
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Results of these simulations reveal that changing NR has little effect upon the pre-

dicted concentrations of either phytoplankton or zooplankton after 8 days (not shown).

Close scrutiny of the Michaelis-Menten nutrient-limitation factor in equation (2.23) re-

veals that productivity changes of up to 30% could theoretically occur as a result of this

nutrient variation, but this fails to happen in practice. This is because the significantly

altered nutrient levels are confined to a very narrow region near to the river inflow,

partly due to the flow regime of the thermal bar, and plankton growth is suppressed in

this area as a result of the fixed values of PR and ZR.

After 16 days the influence of the NR variation has spread away from the near-river

region and induced significant changes in the growth rates of phytoplankton (figure

9.8(a)). Interestingly, it is only at the position of the bloom that large differences in

phytoplankton concentration are noted, because this is the only place where nutrient

levels seriously limit growth in simulation F and phytoplankton variation between sim-

ulations is not suppressed by the fixed value of PR. Zooplankton populations are still

relatively unaffected as these differences in phytoplankton concentration produce only

slight changes in the grazing rates.

Figure 9.8(b) shows the results of varying inflow nutrients after 24 days, when the

effects of NR variation have finally filtered through the food web and significantly altered

concentrations of zooplankton. By this stage the differences in nutrient levels between

each case are generally less than the differences in phytoplankton and zooplankton con-

centration at the location of their respective blooms. This is because the phytoplankton

take up all nutrients available to them during the simulation, transferring the river’s

variation in Nitrogen content from the nutrients to the plankton levels of the model.

These simulations confirm that nutrient limitation of photosynthesis is very impor-

tant in the later stages of case F and show that most qualitative features of the ecosystem

model are independent of reasonable variations in the river nutrient level. These results

imply that a difference in the spring riverine nutrient loading to a lake will not become

apparent in plankton levels for a considerable time, but could eventually have noticeable

consequences for the near-shore flora and fauna. This delay must be at least partly due

to the riverine thermal bar, as varying nutrient concentrations from the river are not
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allowed to mix away from the low riverine levels of plankton for some time. These re-

sults also suggest that a lake of this sort could act as a ‘nutrient regulator’, transferring

inflow nutrient fluctuations to plankton biomass and thus suppressing the variation in

the nutrient itself.
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Figure 9.8: Comparison of N -P -Z characteristics for F simulations with var-

ious values of NR: (a) 16 days, (b) 24 days.

9.3.2 Phytoplankton

Fixing a PR value of 1 mmol N m−3 could have a disproportionate effect upon the

qualitative behaviour of the ecosystem model by promoting excessive growth at the

start of the simulation or suppressing phytoplankton development later on. As there is

little plankton data for the South Thompson River, a crude idea of the effects of the PR
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level is obtained from simulation FPM50, which has a reduced PR value of 0.5 mmol N

m−3.

Decreasing the phytoplankton influx PR has a noticeable effect on the Franks et

al. (1986) model much more quickly than varying NR. Although zooplankton concen-

trations are hardly affected after 8 days, the lower PR level apparently depletes the

phytoplankton concentration at the most important time, reducing the thermal bar

bloom when it is near the river inflow in the early stages of the simulation. This is ev-

ident from the disappearance of the localised phytoplankton maximum at the thermal

bar which is seen in simulation F at this time.

The reduced magnitude of the phytoplankton bloom after 16 days which arises from

this situation has a marked effect on zooplankton concentrations, removing the zoo-

plankton maximum seen in figure 9.4(b). Due to the suppression of primary production,

nutrient levels are also higher and do not limit photosynthesis at this stage.

Zooplankton levels are eventually affected the most by decreasing PR, as shown

in figure 9.9, because the phytoplankton population manages to attain similar bloom

values to case F, albeit at a position which is slightly further away from the riverine

boundary conditions. The zooplankton bloom takes place much later and is therefore

less substantial and a little further to the shoreward side of the main phytoplankton

bloom, which follows the thermal bar’s propagation. This leads to a less symmetrical

‘double bloom’ in the phytoplankton, allowing slightly higher maximum phytoplankton

concentrations after 24 days than simulation F.

Although the value of PR is clearly very important for fixing the exact size and po-

sition of the respective plankton blooms, greatly reducing its value does not suppress

either bloom or prevent nutrient limitation from creating a local minimum in the ear-

lier phytoplankton bloom. It is therefore shown that the qualitative behaviour of this

ecosystem model does not directly result from the arbitrarily-chosen value of PR.
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Figure 9.9: Comparison of N -P -Z characteristics for simulations F and

FPM50 after 24 days.

9.3.3 Zooplankton

With the zooplankton blooming in their own right after 24 days and playing an ancillary

role in the development of the double phytoplankton bloom, the potential exists for the

arbitrarily-fixed ZR value of 1 mmol N m−3 to have a controlling influence on the qual-

itative behaviour of the whole ecosystem model. Since the fixed zooplankton mortality

rate ensures that concentrations in the lake immediately recede from this value during

the simulation, the influence of the ZR value is tested here by a discussion of results

from simulation FZM50, which has a reduced ZR value of 0.5 mmol N m−3.

In contrast to the model’s behavour when nutrients and phytoplankton are varied, the

alteration of ZR has a rapid effect on the state of every component of the N -P -Z model.

This happens because, in non-limited feeding situations, grazing or photosynthesis rates

are affected more quickly by changes to the ‘feeder’ concentration than by changes to

the ‘food’. Reducing ZR immediately allows more phytoplankton growth by decreasing

the grazing rate, and available nutrient levels are reduced accordingly in the near-shore

region.

Although fairly significant, the net effect of these changes after 24 days is restricted
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Figure 9.10: Comparison of N -P -Z characteristics for simulations F and

FZM50 after 24 days.

to the absolute values of plankton concentrations rather than their spatial tendency

(figure 9.10), which is not unduly worrying given that the lack of data means that the

model is only capable of giving qualitative results anyway. Importantly, the change in

lake zooplankton concentrations is no larger than the change applied to ZR, confirming

that variations in riverine conditions are not magnified in any part of the lake ecosystem.

9.4 Discussion and Comparison with BK

In contrast to the ‘bloom and bust’ character of the phytoplankton predicted by this

model, St.John et al. (1976) found that phytoplankton populations in Kamloops Lake

continue to develop steadily throughout spring and into late summer. Although the

results detailed here could be completely accurate and are a correct solution of the

Franks et al. (1986) model, the prediction of this double phytoplankton bloom after

only 24 days is viewed as suspicious because it lies in contradiction to these (admittedly

sparse) observations and other available data on the distribution of plankton around a

spring thermal bar or similar convergence zone. In reality, the absence of any detailed

plankton data from Kamloops Lake on the spatial and temporal scales required for

this study makes it impossible to quantitatively validate results, and so this discussion

regards only the qualitative predictions of this plankton model.
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Using an identical version of the Franks et al. (1986) model, BK produced a reason-

able preliminary fit to the data of Likhoshway et al. (1996), so it is the purpose of this

section to justify why these results differ from those of BK and are not considered to be

as satisfactory. Comparing contours of phytoplankton and zooplankton concentration

after 16 days (figure 9.2) with those from BK after 20 days (figure 12 of BK), it is

obvious to the reader that the rate of phytoplankton growth is strongly promoted in the

riverine simulation. This considerable photosynthesis rate is responsible for the quick

succession of simulation F, which is why plots of primary production in BK (their figure

16) show the double phytoplankton bloom only just beginning to appear after 40 days

of simulation.

Comparing the photosynthesis terms of SP throughout the work of BK and simula-

tion F (figure 16 of BK and figure 9.6(a) respectively), it can be seen that phytoplankton

growth rates are similar after 10 days, but that simulation F has a maximum produc-

tivity which is 50% higher than BK after 20 days. Furthermore, N -P -Z profiles after

20 days of simulation (figure 9.5 and figure 10 of BK) show that the two ecosystems are

in a very similar state in the unstable waters offshore of the Tmd, but that the riverine

scenario promotes the growth of plankton both inshore of and at the thermal bar.

These observations can now be used to explain the differing plankton growth rates

between BK and this work. As all model parameters are the same in each study, there

are only two broad potential causes: the lake’s thermal regime and the influence of

the riverine boundary conditions. The work on the effects of stability and boundary

conditions presented in sections 9.2.1 and 9.3 provides the necessary background for

this discussion, and indicates that it is the stability-led differences in vertical diffusivity

which leads to the differences in growth rate rather than increased nutrient supply from

the river.

This conclusion is reached because simulations with NR, PR, and ZR reduced by

30%, 50%, and 50% respectively still have zooplankton bloom levels of at least double

the BK magnitude after 24 days. In addition, vertical N -P -Z variations are shown to be

strongly correlated with N 2 profiles, and stability values are generally several orders of

magnitude higher in simulation F than in BK. In simulation F, the growth of plankton
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at the stability maximum inshore of the thermal bar exceeds that at the Tmd, despite the

suppressive effect of the riverine boundary conditions for plankton, and actually exceeds

the magnitude of the BK bloom at the location of the thermal bar. Tests have shown

that the high growth rate is independent of PR and ZR values, and these features cannot

be due to the continued riverine nutrient input because growth is not Nitrogen-limited

at this stage in the BK case. Therefore this extra growth must be due to the stronger

static stability imparted by the rapidly-warming river inflow.

It is reasonable to assume that a strong enough river inflow could cause enough

turbulence in the near-shore region to offset these effects of stability on the plankton

growth. As the neglect of shear effects in the vertical eddy viscosity is fully justified

in chapter 4, the consequences of this effect are ignored here, as they are beyond the

resolution of the present model. Considerable improvements to the turbulence model

could form the basis of an extension of this study, and are probably necessary to prop-

erly describe the effects of river-generated turbulence and their influence on plankton

populations.

It is concluded that the phytoplankton growth in this model is probably excessive,

even though the available data on plankton about a riverine thermal bar is not of a fine

enough scale to refute the existence of the predicted ‘double’ phytoplankton bloom after

only 24 days of spring warming. In adopting the Franks et al. (1986) model, BK argued

that its growth rates were not ideally suited to temperate lake plankton modelling in

spring due to the lack of any temperature dependance (see section 2.5.1). When the

absence of self-shading and the immediate return of detritus to the available nutrient

pool are also considered, it is clear that the most controversial simplifications of this

model all tend to produce higher productivity than would otherwise be the case.

The lower stability of BK allowed plankton growth values to remain reasonable in

their work, but in the case of the riverine thermal bar a model incorporating a more

realistic photosynthetic production is probably required. The extent to which this model

oversimplification can be rectified realistically and at reasonable computational expense

is explored in the next chapter by discussion of the results of the N -P -Z-D ecosystem

model of Parker (1991), which is coupled to these Kamloops Lake dynamics.
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Chapter 10

Results - Improved Plankton

Modelling

It is shown in this chapter that doubts over the validity of the results in chapter 9 are

probably well-justified. By studying the development of a more sophisticated plankton

model on the same flow-field and thermal regime, it is possible to test the influence of

some of the more controversial simplifications of the Franks et al. (1986) model.

As detailed thoroughly in chapter 2, the plankton model of Parker (1991) contains

a detritus component and is fully dependent upon temperature, with every biological

interaction multiplied by a thermal variation factor q. Results of the Franks et al. model

presented in chapter 9 lead to a particular interest in the effects of improvements to the

photosynthesis formulation, catered for in the Parker model with the inclusion of the

diurnal light fluctuation, self-shading, and optimum light intensity for phytoplankton.

This chapter proceeds with a discussion of results from simulation P, the predictions

of the basic Parker model on Kamloops Lake under riverine boundary conditions of

NR-PR-ZR-DR = 4-1-1-1 mmol N m−3. A closer inspection of each of the source terms

in the Parker model is then presented, and the relative importance of each is discussed.

In order to provide a thorough basis for the comparison of the two models at the

end of this chapter, the effects of simplifying the Parker model are studied in detail. A

particularly important finding is that by removing the detritus component and ignoring

temperature dependance and self-shading, it is possible for the Parker model to qual-
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itatively reproduce the suspicious ‘double-bloom’ results of the previous chapter. This

suggests that the oversimplification of the Franks et al. model could be responsible for

the potentially excessive phytoplankton growth seen in simulation F and illustrates that

the qualitative N -P -Z behaviour is independent of model parameter choices.

10.1 Temporal Evolution of Plankton Population

10.1.1 8 days of simulation

After only 8 days of simulation it is obvious from phytoplankton concentrations that

simulation P will produce a totally different ecosystem to simulation F. Phytoplankton

growth is obviously less prolific in the Parker model because concentrations are much

lower after this time than in simulation F (compare figures 10.1(a) and 9.1(a)). The

growth which has taken place is restricted to the near-river region and seems to be

dominated by the inflow boundary conditions, with riverine phytoplankton values being

transported vertically in a similar manner to the tracer concentrations in figure 8.15.
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Figure 10.1: Characteristics of simulation P after 8 days: (a) phytoplankton
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However, this distribution is actually supported by photosynthesis, as the temperature

dependance prompts growth in the warm river region rather than at the Tmd.

Zooplankton behave in a qualitatively similar way in simulations P and F, but the

actual zooplankton concentrations in the lake after 8 days are much lower in simulation

F. In simulation P, the halved zooplankton mortality overcomes the generally lower

assimilated grazing rate and allows far more zooplankton to survive the initial stages

of ecosystem development. In fact the mortality is reduced to such an extent that

zooplankton concentrations are virtually uniform at this stage of the simulation.

10.1.2 16 days of simulation

Results follow a similar pattern after 16 days of simulation. The phytoplankton bloom

which emerges has a much smaller magnitude than that of simulation F (compare figures

9.2(a) and 10.2(a)), and is localised closer to the river at the stability maximum inshore

of the surface Tmd which is described in section 9.2.1. As shown in later analyses,
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this arises from the skewing of growth towards the warm river by the temperature

dependance.

Zooplankton characteristics are very slowly-varying, and after 16 days there is still

little sign of any growth which is independent of the riverine boundary conditions. The

qualitative similarities between contours of zooplankton and tracer at this time indicates

once again that zooplankton mortality and grazing have nearly identical distributions

(if not absolute values) within the lake.

10.1.3 24 days of simulation

After 24 days the predictions of phytoplankton concentration in models P and F are

qualitatively different. While simulation F now has a fully-developed double phyto-

plankton bloom, simulation P still shows a single bloom, far inshore of the Tmd, with

maximum phytoplankton concentrations at a value of half of that attained by simulation

F after only 16 days. Values at depth are also much lower, due to the convection of
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reduced phytoplankton concentrations downwards, and the largest concentrations are

no longer carried downwards by the thermal bar because the bloom is so much further

inshore of the main downwelling motions.

As with the earlier stages of simulation P, zooplankton distributions are still dom-

inated by riverine effects after 24 days of open-lake grazing. In total contrast to the

zooplankton bloom of simulation F (figure 9.3(b)), zooplankton concentrations experi-

ence a shallow gradient of decrease away from the river plume region to offshore of the

Tmd and the depths of the lake.

10.2 Closer Examination of Plankton Growth

A horizontal profile of all four components of the plankton model gives a very econom-

ical view of the status of the entire ecosystem and permits a discussion of the nutrient

and detritus components of the model (figure 10.4). The plot shows how slowly the

Parker model develops, with the main biological interactions being the gradual bloom-

ing of phytoplankton inshore of the Tmd and the death of both plankton types increasing

detritus concentrations away from the river inflow. This plot also highlights the limita-

tions of the zooplankton, which do not seem to display any net growth through grazing

during simulation P.

Comparing these profiles with the equivalent for simulation F (figure 9.4) emphasises

the massive difference in the rates of interaction between the components of each model.

The most important change in simulation P is the decreased photosynthesis rate, and

these plots show that after only 8 days there is a significant difference in phytoplankton

concentrations everywhere in the domain. It is especially interesting to note that simu-

lation P restricts the majority of phytoplankton growth to the near-river areas, while a

fair amount of photosynthesis takes place offshore of the Tmd in simulation F.

As a result of the stunted phytoplankton growth in the open lake, nutrient levels

stay constant there throughout simulation P despite the delay in returning planktonic

detritus to the nutrient pool. This result is contrary to the observations of simulation

F, where nutrients are rapidly depleted everywhere under the pressure of mass phyto-
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plankton growth. Of all components it is the detritus which gains the most Nitrogen

when averaged over the whole open lake, because plankton mortality and unassimilated

zooplankton grazing exceed the detritus to nutrient conversion rate. The large detri-

tus availability means that the conversion rate will be relatively high, so the nutrients

should continue to grow with time in the open lake. These observations are explained

in the following sections by a closer analysis of the source and transport terms in the

governing equations.
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Figure 10.4: Horizontal N -P -Z-D profiles at 5 m depth throughout simula-

tion P : (a) 8 days, (b) 16 days, (c) 24 days.

10.2.1 Phytoplankton

The single phytoplankton bloom predicted by the Parker model is explained here by

examining each term of the governing advection-diffusion equation (table 10.1). As in
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simulation F, vertical convection and phytoplankton mortality terms may be ignored

immediately due to their small magnitude. Also as before the distribution of horizontal

convective and diffusive processes is not of particular interest as they simply denote

transport at the river inflow and across the thermal bar respectively.

As in simulation F it can be seen that vertical diffusion and photosynthesis (at

the average light intensity) are the leading-order terms, but unlike simulation F the

latter significantly outweighs the former almost everywhere in this model. This happens

because, despite having a similar distribution, vertical diffusion of phytoplankton is

lower due to a reduction in the curvature of the vertical phytoplankton profile which is

caused by the lower phytoplankton growth, especially offshore of the Tmd. Overall the

vertical diffusion of phytoplankton is reduced by a larger quantity in simulation P than

the primary production, and therefore production is now largest.

Term in P transport equation Minimum Maximum

Primary production (average) 4 × 10−6 2 × 10−5

Grazing −2× 10−6 −2× 10−7

Mortality −4× 10−9 0

Vertical diffusion −2× 10−5 0

Horizontal diffusion −5× 10−6 1 × 10−5

Vertical convection −1× 10−7 2 × 10−6

Horizontal convection −5× 10−6 2 × 10−6

Thermal variation factor 0.3 0.6

Table 10.1: Range of values of each term in the P transport equation along

a near-surface horizontal profile during the first 24 days of sim-

ulation P. All units are mmol N m−3 s−1

By comparing figures 10.5(a) and 9.6(a) it can be seen that the horizontal distribution

of primary production is fundamentally altered by temperature dependance even before

the effects of nutrient limitation become apparent in simulation F. Table 10.1 shows that

q changes by a factor of 2 over the domain, and figure 10.5(b) shows that this variation

favours biological interaction near the warm river inflow. This results in the situation
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pictured in figure 10.5(a), where the photosynthesis is always greater near the river than

in the open lake offshore of the Tmd, a result which contrasts with simulation F, where

photosynthesis reaches a minimum near the river inflow due to the fixed value of PR

(figure 9.6(a)).
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Figure 10.5: Source terms for phytoplankton throughout the simulation: (a)

photosynthetic production (taken at the average value of light

intensity) and position of the Tmd (|), (b) thermal variation

factor q.

By stressing the importance of q, it can be argued that the temperature dependance

of the Parker model is responsible for both the lack of phytoplankton growth offshore

of the Tmd (which is noted in the discussion of figure 10.4) and the lagging of the

phytoplankton bloom further behind the Tmd than in simulation F, which was noticed

186



throughout section 10.1. Temperature dependance is also seen to influence zooplankton

grazing in simulation P, but the effects of this particular phenomenon are minimal

because overall grazing rates are found to be a much lower proportion of photosynthesis

than in simulation F.

10.2.2 Zooplankton

Examining the magnitude of terms in the zooplankton equation (table 10.2) reveals

the dominance of transport processes over the biological production and destruction

of zooplankton. This supports the observations that zooplankton concentrations are

dominated by the riverine boundary conditions throughout simulation P, as it implies

that the transport of riverine values around the domain will obscure any zooplankton

grazing or mortality which may take place.

Term in Z transport equation Minimum Maximum

Assimilated grazing 5× 10−8 7 × 10−7

Mortality −7× 10−7 −2× 10−7

Vertical diffusion −2× 10−6 0

Horizontal diffusion −8× 10−7 2× 10−6

Vertical convection −1× 10−8 2× 10−7

Horizontal convection −4× 10−7 1× 10−6

Table 10.2: Range of values of each term in the Z transport equation along

a near-surface horizontal profile during the first 24 days of sim-

ulation P. All units are mmol N m−3 s−1.

In addition, plotting the assimilated grazing and mortality rates for zooplankton

in figure 10.6, we can see that mortality overturns most of the zooplankton growth

throughout the simulation. This is partly due to temperature dependance, which will

ensure that all biological interactions tend to attain their most significant values in the

same area of the domain. It can be concluded from this study that zooplankton behave

as a virtually neutral tracer in simulation P.
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-6                      -3  -1(  10   mmol N m  s  )

Zooplankton mortality
-6                      -3  -1(  10   mmol N m  s  )

0.75

0.5

0.25

0

0

-0.25

0  5 10
Distance (km)

21 3 4 6 7 8 9

4 days

24 days
20 days

16 days

12 days

8 days

-0.75

-0.5

4 days

24 days
20 days

16 days 12 days

8 days

Figure 10.6: Source terms for zooplankton throughout the simulation: (a)

assimilated zooplankton grazing, (b) zooplankton mortality.

10.3 Effect of New Features in Model

The qualitative differences in the plankton predictions of each model lead to the ques-

tion of why these simple models would give such vastly different answers in the same

dynamical and thermal regime. The intention of this section is to gradually strip away

the sophisticated features of the Parker model until the basic functionality of the Franks

et al. model is recovered. This is done in order to assess the contribution of each in-

dividual improvement of the Parker formulation over Franks et al. so the neglect of

each component is discussed individually before all relevant components are removed in

section 10.3.4.
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Comparing the formulation of the two plankton models it is easy to deduce that

there are five major differences: the detritus component, temperature dependance, the

zooplankton grazing formulation, the phytoplankton mortality formulation, and the

inclusion of self-shading. Since the phytoplankton mortality and zooplankton grazing

terms are found to be relatively unimportant in this test (table 10.2), we proceed by

discussion of three Parker model simulations which each have one of the other factors

removed.

In the following sections, the simulations with and without detritus, self-shading, or

temperature dependance (the formulations of which are all fully described in section 2.5)

are referred to as simulations PD, PS, and PT respectively. In addition, a simulation

without any of these components will be referred to as PTSD here.

10.3.1 Detritus Removed

It can be seen from the results of simulation PD after 24 days in figure 10.7 that re-

moving the detritus component of simulation P actually has very little effect on the

plankton ecosystem. Nutrient levels are increased by the same amount that detritus

gained previously, as all plankton waste products are now returned directly to the nu-

trient pool. In turn this allows a very slightly larger bloom of phytoplankton due to a

minor reduction in nutrient limitation. However, this does not prompt a noticeable in-

crease in zooplankton because the assimilated grazing rates are so small (see table 10.2),

so that overall the effects of including the detritus component do not seem particularly

important. This result is in full agreement with the findings of Edwards (2001), who

showed that the inclusion of detritus only affects a model’s behaviour significantly when

zooplankton are allowed to graze it.

10.3.2 Self-Shading Removed

The removal of phytoplankton self-shading has a rather more profound effect on the

whole ecosystem (figure 10.8). The obvious consequence of this step is an increase in

photosynthesis, and comparing the N -P -Z-D profiles in figures 10.4(c) and 10.8 shows

that this leads to a doubling in phytoplankton growth over the first 24 days of simulation.

189



Phytoplankton levels are mainly increased at the bloom inshore of the thermal bar,

where the large quantities of biomass would normally produce significant shading, but

a detailed comparison reveals that a small increase is also present throughout the rest

of the lake.
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Figure 10.7: N -P -Z profile from simulation PD after 24 days.
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Figure 10.8: N -P -Z-D profile from simulation PS after 24 days.

This increased primary production leads to a greater nutrient depletion, so that
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further photosynthesis is limited inshore of the Tmd. The zooplankton and detritus

components are surprisingly unaffected by the removal of self-shading, however, with

only small increases in each component due to increased grazing and phytoplankton

mortality respectively.

10.3.3 Temperature Dependance Removed

Ignoring the temperature dependance of the Parker model has a far more profound effect

on the ecosystem predictions than either of the two previous changes. As this simulation

was performed by fixing q to be constant at a value corresponding to the Franks model,

the effects of this step are to remove the preferential interaction rates in the warm river

inflow and to generally increase the rate of all biological interactions.
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Figure 10.9: N -P -Z-D profile from simulation PT after 24 days.

Figure 10.9 shows that the effect of standardising q is to increase the phytoplankton

production and promote photosynthesis over a much wider area, including offshore of the

Tmd. This extra growth may not seem obvious from a comparison of figures 10.4(c) and

10.9, but must happen because the detritus component is so vastly increased. This im-

plies that phytoplankton growth is constantly increased here, but the similarly-increased

mortality rates (particularly offshore of the Tmd) transfer the plankton biomass to de-

tritus.
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Increased photosynthesis leads to a greater nutrient depletion, causing the ‘flatter’

phytoplankton bloom seen in figure 10.9, which could be the precursor to a double bloom

caused by nutrient limitation. Zooplankton grazing rates are not sufficiently increased

by the removal of temperature dependance to cause a bloom inshore of the thermal bar,

and the increased mortality makes zooplankton depletion in the open lake even more

prevalent.

10.3.4 All Three Components Removed

The results of simulation PTSD are crucial to this study, since it is postulated in the

rest of this chapter that the three removed components contain the most important

quantities separating the Franks et al. model from the Parker model. None of the variant

simulations above seem to be much closer to simulation F than simulation P, but the

progression of simulation PTSD which is plotted in figure 10.10 shows results which are

remarkably similar to those of figure 9.4. Considering the differences in formulation and

parameter values which are still present between simulations F and PTSD, it is very

interesting that this simplified version of simulation P is able to qualitatively reproduce

the results of chapter 9.

By comparing figures 9.4 and 10.10 we can assess exactly how different the two simu-

lations are. After 16 days it is obvious that the photosynthesis rate is still slightly lower

in simulation PTSD, a difference which becomes more substantial with time. This is

a consequence of the higher nutrient half-saturation constant, ks, in the Parker model,

which leads to nutrient limitation of photosynthesis at much higher nutrient concen-

trations than in simulation F. Also from these plots it is obvious that the zooplankton

mortality rate is much larger in simulation F.

After 24 days of simulation, case F has the fully-developed double bloom described

previously but despite having a similar distribution of all three ecosystem components,

simulation PTSD only shows a small inflexion in the centre of the phytoplankton bloom.

This is mainly due to the difference in ks value, as nutrient limitation in simulation PTSD

causes a much gentler process than the sudden drop in photosynthetic production rates

which takes place in the centre of the phytoplankton bloom of simulation F. It should

also be noted that the zooplankton grazing rate is much lower in simulation PTSD,
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which explains the low predictions of zooplankton concentration in all of the Parker

model variants.
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Figure 10.10: Horizontal N -P -Z profiles throughout simulation PTSD : (a)

16 days, (b) 24 days, (c) 30 days.

After 30 days, simulation PTSD has qualitatively reproduced all of the predictions of

simulation F. Nutrients are not reduced to such a drastic level, and as a result the double

bloom is much wider as the smoother impedance of photosynthesis allows a more gradual,

and therefore less localised, bloom development. Zooplankton levels are also much lower,

so the effect of zooplankton grazing on the double bloom formation is lessened. It is

therefore proposed that with alteration of the nutrient-limitation factor and zooplankton

growth and mortality rates it would certainly be possible to quantitatively reproduce

simulation F from the basis of the Parker model.
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10.4 Discussion and Comparison With Franks et al.

Before fully comparing the results of the Parker model with those of the Franks et al.

model, it is vitally important to note that, in the absence of any high-resolution data on

the spring phytoplankton bloom in Kamloops Lake, it is impossible to conclusively say

which of the two models produces the most reasonable approximation to real plankton

populations. This is why the ‘double bloom’ predictions of Franks et al. are never

definitively held to be wrong; although it has been shown that they are not found in

a more sophisticated model, there is no certain way of knowing whether this complex

model is a more appropriate formulation for Kamloops Lake in the spring. However,

it is noted here that the Parker model predicts photosynthesis rates which generally

agree with a steady productivity over several months, as observed in Kamloops Lake by

St.John et al. (1976).

As the available data are so sparse, the strength and motivation of this work primarily

comes from the desire to test and extend the results of BK to a riverine thermal bar in a

shallow lake, initially producing a purely qualitative comparison between the ‘classical’

thermal bars of their work and the riverine thermal bars of this study. After the results

were found to differ in chapter 9, this chapter is intended to study the sensitivity of

those early results to greater levels of sophistication in the basic model formulation.

Although there is no proof, it is thought that growth is probably excessive in simu-

lation F since the Franks et al. model is conditioned to the marine pelagic ecosystem

in summer and there are no reports of a ‘double bloom’ in phytoplankton in temperate

lakes in spring. By experimentation with a more complex model (which admittedly is

also conditioned for summer marine waters) it is shown in this chapter that the double

bloom results may only be reproduced by ignoring three of the most significant facets

of the new model.

Interestingly, it is found that these results may only be achieved by neglecting all

three of these differences at the same time. The removal of temperature dependance

and self-shading simultaneously allows a large increase in photosynthesis and a shift of

phytoplankton growth away from the river inflow (not shown), and the removal of the

detritus component in simulation PTSD then ensures that nutrient limitation acts in
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exactly the manner required for the prediction of a double bloom. This supports the

contention that the double bloom is probably due to the excessive phytoplankton growth

which results from oversimplification of the Franks et al. model, since it takes a partic-

ular combination of three clearly unphysical assumptions to produce this phenomenon.

The main achievements of this chapter are therefore the elucidation of the effects

of detritus, self-shading, and temperature dependance on simple plankton formulations.

Each of these factors can clearly produce qualitative differences in the predictions of a

plankton model, so they should be included whenever an application includes sufficient

data for parameter-fitting. Of course a great deal of useful information can be gained

from a very simple plankton model, as shown by BK, but this study concludes that the

applicability of these results should be viewed with extreme caution.
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Chapter 11

Conclusions and Suggested Further

Work

Chapters 5 - 10 of this thesis present the results of three different studies of the riverine

thermal bar which have implications for several areas of limnology. The validity of these

results, however, relies upon the assumptions made in the formulation of the original

model. Due to limitations in observational data and available computer power, these

assumptions are rather restrictive, so that most results are considered to be a qualitative

first step towards a full understanding of this previously-unmodelled phenomenon.

The intention of this chapter is to summarise the results and consequences of each set

of simulations and, more importantly, suggest ways in which this rather basic research

could be extended in future. In particular, it is argued how the project could proceed

given greater computational resources, but work on the riverine thermal bar is also

limited by a serious lack of field observations. In order to provide accurate initial and

boundary conditions for these suggested model improvements, new field studies of the

riverine thermal bar must be made, particularly in Lake Baikal.

11.1 Numerical Procedure

A significant impediment to progress on this work, to which a large proportion of this

thesis is dedicated, is the cumbersome nature of the solution procedure. A highly-

accurate solution of the elliptic pressure correction equation is required in order to

enforce continuity and thereby avoid spurious flows, as discussed in section 3.3. This
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necessitates the use of a direct matrix solver which places heavy demands on memory,

limiting the number of grid points, and consumes a large proportion of the total solution

time.

With hindsight, a far more economical solution procedure could be implemented by

adopting a streamfunction/vorticity formulation of the governing equations. A stream-

function could be defined for the two-dimensional flow, with values fixed on the bound-

ary, so that the vorticity equation becomes a Poisson equation with a known right-hand

side for the time derivative. The advantage of this approach is that mass is always

conserved exactly, so an acceptable solution to the flow field could be achieved by solv-

ing the elliptic vorticity equation to a much lower accuracy than that required for the

pressure-correction equation.

11.2 Lake Baikal

The study of Lake Baikal is undertaken on a deep, rectangular section which is nominally

representative of the Selenga River delta. Different thermal scenarios are modelled at

three stages of the spring development of a thermal bar, elucidating a range of possible

dynamics available to this single phenomenon. A river which is only slightly warmer than

the Tmd is found to produce a cabbeling plume which sinks down the nearshore boundary,

while warmer rivers will create a buoyant gravity current inshore of the thermal bar

which moves the cabbeling away from the river inflow by overpowering return flows

on the bar’s offshore side. Increasing the salinity of the inflow tends to convert the

flow regime from the latter situation towards the former, with the density increase

due to salinity generally suppressing the horizontal propagation of the thermal bar and

increasing the downwelling rate and maximum plume penetration depth.

This study explicitly illustrates the buoyancy forces involved in thermobaric control

of a thermal bar’s sinking plume for the first time. In the absence of salinity differences,

the depth at which thermobaric control operates is where the initial temperature profile

crosses the T = Tmd profile. If very cold waters were present at all depths, there would

be no thermobaric control (Kay 2001); however in lake Baikal there is a winter mid-

depth temperature maximum of 3.4 - 3.6◦C (Shimaraev & Granin 1991), implying the
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thermobaric control at depths of 200 - 300 m which is observed in the non-saline cases

of this model.

As detailed in chapter 7, a saline thermal bar’s increased mineralisation counteracts

the thermobaric deceleration by raising the plume’s density relative to that of the am-

bient lake water. This increases the maximum plume penetration depth, because the

water has to sink further for the thermobaric bouyancy forcing to become large enough

to halt the downwelling.

The evaluation of saline effects on a riverine thermal bar is probably the most signifi-

cant advance of this work. The curtailment of horizontal propagation of the thermal bar

which is associated with a riverine salinity increase could severely inhibit the dispersion

of riverine pollutants and nutrients in a temperate lake, while the increased vertical

mixing could substantially increase the residence times of these undesirable substances

(Killworth & Carmack 1979). A riverine loading of pollutants which is safe when dis-

persed throughout the lake could be concentrated to a harmful level when localised by

flow patterns within specific regions, and it is therefore important to consider the possi-

ble effects of salinity when determining acceptable levels of pollution in a deep temperate

lake.

Of most importance to Baikal is the deepened vertical advection which results from

a salinity increase suppressing the thermally-induced resistance to sinking. The model

predicts that the thermal bar plume could certainly be involved in deep mixing of Lake

Baikal if combined with an increased riverine salinity of the magnitudes studied here.

The crucial point is that salinity cannot be ignored in any temperate lake during

spring and autumn overturn, when temperatures are close to the Tmd. Neglect of the

buoyancy forcings arising from salinity variation in Baikal has been shown here to be

flawed, at least when considering regions in the vicinity of a river delta. There is clearly

an important range of conditions under which the complex interplay between thermal

and haline effects must be included in modelling efforts.

Although this study yields new results on the riverine thermal bar in a deep lake and
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is an important base for future work, the model employed is barely satisfactory in this

particular case due to the limited domain size and simulation timespan which is caused

by restrictions on computational power. The first and most important improvement

which could be made to this model on a more powerful machine is to run longer simu-

lations, preferably of the entire spring warming, so that a variable inflow temperature

could be employed. A longer simulation time would also allow the inclusion of coriolis

forces and a surface heat flux, removing the main potential criticisms of the existing

model. Introducing a wind stress on this more realistic riverine thermal bar could pro-

vide an interesting and important robustness study by quantifying the wind-sensitivity

of the motions predicted in the original model.

After many basic results have been achieved on a rectangular domain by varying river

discharge and temperature and the surface heat flux and wind stress, the next model

development phase would be an improvement of the section bathymetry. A selected

Selenga delta cross-section would be more realistic, but a truly accurate prediction of

the flow in this area of Lake Baikal can only be made with a three-dimensional model.

Supercomputing time would almost certainly be required for this intensive simulation,

but its use would be thoroughly justified by the considerable increase in realism that a

third active dimension would bring.

In order to properly quantify the effects of turbulent mixing of the river and lake,

future high-resolution studies should attempt to include more sophisticated turbulence

closure schemes than the algebraic model applied here. Shear in horizontal flows will

increase vertical mixing inshore of the thermal bar, so that the results presented here

may be altered as the vertical diffusivity is based solely upon stability. As a related

study, a Large-Eddy Simulation could be employed under carefully controlled conditions

to examine the reported inducement of the thermobaric instability by a thermal bar

(Shimaraev et al. 1993) and the effect of salinity on this potential mechanism for deep-

water renewal.

As mentioned in section 1.1, most studies of the thermal bar concentrate upon the

spring warming period. It would be a fitting counterpart to the work in this thesis if a

similar model were applied to the autumn riverine thermal bar. A detailed numerical
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comparison of the properties of both classical and riverine, spring and autumn thermal

bars could then complete our knowledge of the thermal bar in all its guises. The ulti-

mate aim of this study would therefore be to perform a three-dimensional model of the

Selenga inflow and its influence on mixing in Lake Baikal throughout the entire annual

temperature cycle, including both spring and autumn thermal bars.

11.3 Kamloops Lake Dynamical Work

The dynamical study of Kamloops Lake presented in chapter 8 is basically successful as

it qualitatively reproduces the measured temperature fields of Carmack et al. (1979). In

particular, the riverine thermal bar’s transition from sinking boundary plume to surface

gravity current is reproduced so that three distinct stages of thermal bar development

may be defined. These three stages are found to correspond quite closely to the dy-

namics of the three thermal cases selected in the Lake Baikal study. The thermal bar’s

circulation is found to weaken as it propagates across the lake due to the slackening of

horizontal density gradients away from the inflow.

This verified simulation is then tested for sensitivity to various model factors in

order to gain insight into their overall importance. The study shows that a surface

heat flux unsurprisingly increases the propagation rate of the thermal bar slightly by

warming more water through the Tmd in a given time. Unexpectedly, switching to a

rectangular bathymetry has little effect upon the horizontal propagation of the thermal

bar, but does seem to weaken downwelling flows in this model. Thermobaricity is also

rather ineffectual in this shallow lake, despite significantly influencing the positioning of

maximally dense water in the mid-depths (see section 8.3).

Removing coriolis forces from the model, however, changes the resulting dynamics

drastically. Coriolis forces are found to regulate the horizontal movement of the thermal

bar and suppress its downwelling, transferring momentum to the strong longshore flow

predicted by previous authors (Huang 1972). However, it should be noted that in

reality this flow would soon be deflected by the sides of the inflow region. Indeed, the

narrow fjord-like bathymetry of Kamloops Lake clearly contravenes the assumption of

no variation in the longshore direction upon which the model formulation is based (see
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section 2.1). Despite this caveat, simulations K and KQ show that with the inclusion

of coriolis forces the flow field within the modelled section produces a temperature

distribution which is closer to that observed by Carmack (1979).

In contrast, the Selenga River inflow to Lake Baikal is located in a region which

provides a reasonable basis for the neglect of variations in the longshore direction. How-

ever, coriolis forces are not adopted in the deep-lake model because the effects of rotation

are subject to a misleading period of spin-up which persists for longer than the entire

timespan of these simulations, as discussed in section 8.6.

Another surprising result from these simulations is that it takes an extremely large

increase in riverine salinity to noticeably affect the thermal bar circulation. This hap-

pens because the spatial temperature variation (which follows observed values) is so

great during most of the simulation that thermal effects dominate buoyancy, unlike the

delicately-balanced temperature gradients in the Selenga delta model, which is rather

more susceptible to saline effects.

Many of the later improvements recommended for the deep-lake model in section

11.2 would also be sensible model development steps when applied to this study. Since

simulation K has been validated against measurements, a full study of the effects of

other inflow and surface heating rates, river delta slopes, and wind forcings in the style

of Malm (1995) could use this base simulation to build a body of theory on the dynamics

of the riverine thermal bar.

The changes proposed above tend to bias the model towards a general description

of the riverine thermal bar, but the study could also produce an accurate model of the

particular flow conditions of Kamloops Lake. The three-dimensional bathymetry of the

whole lake could probably be adopted at reasonable computational cost due to its rela-

tively small proportions. The wide range of information on the lake’s annual circulation

cycle and river plume dynamics present in the literature means that, under a variable

surface heat flux and river temperature, the entire annual range of flow conditions in

Kamloops Lake could be predicted.
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11.4 Kamloops Lake Biological Work

The plankton studies in this thesis were originally conceived as an extension of the work

of BK (in modelling plankton populations in the presence of a classical thermal bar) to

the riverine case. To this end, the Franks et al. (1986) model is first fully studied in the

context of the riverine thermal bar and then the simple results from this simulation are

compared to those of the Parker (1991) ecosystem model, which is considerably more

sophisticated.

The Franks et al. (1986) model predicts a swiftly-developing phytoplankton bloom

at the position of the thermal bar. This bloom soon suffers depletion in its centre due

to nutrient limitation and zooplankton feeding, so that by the end of the simulation

there are two distinct blooms, one centred upon the position of the thermal bar and

one halfway between the bar and the river mouth. The zooplankton also grow rela-

tively quickly and have produced a small local population maximum by the end of the

simulation.

Analysis of this ‘double bloom’ in phytoplankton populations reveals that one bloom

is supported by the convergence of the thermal bar, while the inshore bloom is at the

position of a stability maximum caused by the mixed interface of river and lake water.

Further investigations show that the double bloom is also present in simulations in which

the riverine boundary conditions have been drastically altered. The extra stability of

the riverine thermal bar is therefore responsible for generating the second inshore bloom

and producing a generally higher growth rate than is present in BK. As this double

bloom distribution has never been observed in the field, these results raise suspicions

about the applicability of the Franks et al. (1986) model.

The Parker (1991) model has lower growth rates from the very beginning, with the

phytoplankton only producing a shallow, single bloom at the end of the simulation.

Zooplankton growth rates are also comparatively tiny and the zooplankton distribution

is generally that of a neutral tracer.

The Parker (1991) model’s behaviour is compared to the suspicious results of the

Franks et al. (1986) model by removing the extra features which separate the two formu-
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lations. Removing the detrital component has surprisingly little effect on the ecosystem

dynamics, but neglecting self-shading or temperature dependance has a massive effect

upon the phytoplankton productivity. By removing all three together it is possible to

produce a double bloom similar to that of the Franks et al. (1986) model, which shows

that this feature is caused by a qualitative oversimplification of the model. The use of

this formulation to predict lake plankton in spring is therefore brought into question.

In the absence of the detailed data required to justify more complex ecosystem models

it is difficult to propose a reasonable extension of these numerical studies. The discussion

of river and lake plankton trends in section 1.6 shows that the riverine thermal bar may

have a wide range of interesting effects upon plankton populations, but without accurate

river and lake measurements of each biological component, nutrients, and turbidity, it

is difficult to produce any useful results which are specific to Kamloops Lake.

Given a more sophisticated turbulence model, there is some scope for development of

an abstract model of the ecological implications of the riverine thermal bar, based on a

range of different boundary and initial conditions on the river and lake. Improvement of

the turbulence modelling would be absolutely vital to this study, as the eddy diffusivities

have been shown to control the plankton productivity and the possibility exists that the

present model is over-predicting growth due to the lack of shear effects in the vertical

eddy diffusivity.

Two basic phenomena which are not resolved in the Parker (1991) model are plank-

ton sinking and the shading of plankton by riverine turbidity. As mentioned by BK,

sinking could possibly be represented by applying a fixed rate proportional to the vertical

turbulent diffusivity, as plankton re-suspension is a consequence of convective motions

associated with instability (Kelley 1997). Turbidity could be represented by the tracer

variable, introducing an extra shading term into the exponent of equations (2.23) and

(2.30). A specifically riverine plankton model could also be developed in order to pro-

vide boundary conditions for a coupled river and lake solution, but river plankton are

currently far too poorly understood to begin this development.

Throughout this thesis I have tried to emphasise that all results are considered to be
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a qualitatively correct first modelling attempt, and could be vastly improved by future

researchers in posession of a powerful computer. I sincerely hope that this work will

promote the continued study of the riverine thermal bar, perhaps to such an extent that

field workers might undertake the highly detailed and wide-ranging field studies of the

riverine thermal bar which are required to support further numerical models.
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Appendix A

Simulation Details

Preliminary Models:

Identifier SR (mgkg−1)

C 96.3

S1 97.3

S2 98.3

Table A.1: Characteristics of the deep-lake control simulations in this work.

All have TR = TL = 3.4◦C and SL = 96.3 mgkg−1.
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Lake Baikal Dynamical Models:

Identifier Time (days) SR (mgkg−1) Features

T7 7 96.3

T7S1 7 97.3

T7S2 7 98.3

T7S5 7 101.3

T7S10 7 106.3

T9 9 96.3

T9S1 9 97.3

T9S2 9 98.3

T9S5 9 101.3

T9S10 9 106.3

T9P 9 96.3 Thermobaricity neglected

T9D 9 96.3 Domain width 10 km

T9UP 9 96.3 QUICK differencing neglected

T9U0 9 96.3 uR = 0

T9U1 9 96.3 uR = 0.01 ms−1

T9A2.5 9 96.3 Ah = 2.5 m2s−1

T9A7.5 9 96.3 Ah = 7.5 m2s−1

T11 11 96.3

T11S1 11 97.3

T11S2 11 98.3

T11S5 11 101.3

T11S10 11 106.3

Table A.2: Characteristics of the deep-lake simulations in this work, includ-

ing simulation time of the one-dimensional preconditioning mod-

els, inflow salinity level and details of special features.
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Kamloops Lake Dynamical Models:

Identifier Features

K Basic Kamloops simulation

KD Domain width 20 km

KQ QUICK differencing included

KH No surface heat flux

KB Rectangular-box bathymetry

KP Thermobaricity neglected

KC Coriolis neglected

KS5 SR = 105 mgkg−1

KS10 SR = 110 mgkg−1

KS20 SR = 120 mgkg−1

KS50 SR = 150 mgkg−1

Table A.3: Characteristics of the dynamical Kamloops Lake simulations in

this work.

Franks et al. Ecosystem Models:

Identifier Features

F Basic Franks simulation

F30 NR = 5.2 mmol N m−3

FM30 NR = 2.8 mmol N m−3

FPM50 PR = 0.5 mmol N m−3

FZM50 ZR = 0.5 mmol N m−3

Table A.4: Characteristics of the plankton simulations employing the model

of Franks et al. (1986).
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Parker Ecosystem Models:

Identifier Features

P Basic Parker simulation

PS No self-shading

PT No temperature dependance

PD No detritus component

PTSD All of the above

Table A.5: Characteristics of the plankton simulations employing the model

of Parker (1991).
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Nomenclature

Roman script:

ai, anb, aX coefficients representing neighbouring node influence

Â coefficient matrix

Ah, Av horizontal and vertical eddy viscosities

B solid boundary

Bo, BoI , BoO open boundary, inflow boundary, outflow boundary

cp specific heat at constant pressure

Ci concentration of the ith component of a plankton model

Co detritus to nutrient conversion rate

d general depth

d̄ cut-off depth for vertical eddy viscosity

D detritus

F height of free surface above lake bed

F external forcing vector

g acceleration due to gravity

G phytoplankton primary production rate

hx, hz horizontal and vertical grid spacing

H pressure variation function in the equation of state

i, j grid indices in x and z directions

I zooplankton grazing rate

Î unit tensor

k turbulent kinetic energy

ks phytoplankton nutrient uptake half-saturation coefficient

K, Kh, Kv eddy diffusion coefficients for scalar variables

L length of domain

Ls, Ld light intensity at surface and depth d

mP , mZ phytoplankton and zooplankton mortality rates
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M maximum phytoplankton death rate

n (nx, nz) number of cells (in horizontal and vertical directions)

nl phytoplankton mortality rate N dependance coefficient

no coordinate direction normal to a given boundary

N nutrients

N2 stability (square of Brunt-Väisälä frequency)

Nmin cut-off value of stability

N(α, β) normal distribution with mean α and variance β

p pressure

p′ pressure correction

P phytoplankton

Pe cell Peclet number

P̂ , Q̂, L̂, Û matrices used in the solution procedure

q plankton interaction thermal dependance factor

Qs surface heat flux

Qj, Sj general result of forward-elimination step in TDMA

r, s constants in vertical eddy viscosity parameterisation

Rm maximum zooplankton ingestion rate

Ri (RiC) Richardson number (critical value of)

Res(x) residual of solution x

s vector of source terms

sc light saturation coefficient

sj jth-level source term in one-dimensional model

S salinity

Se east-face source term minus pressure gradient

Ss self-shading coefficient

SCi
, SX , SΦ, SP ′ source term associated with subscript

t time

T temperature

Tmd temperature of maximum density

u (ui) velocity vector (ith component of)

u, v, w velocity components
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Vm maximum phytoplankton growth rate

VΦ control volume of integration

x,y general system solution

x, y, z, xi model coordinates

Z zooplankton

Greek script:

α thermal expansion coefficient

β coefficient of haline contraction

γ, γN , γD unassimilated fractions of zooplankton grazing

Γ adiabatic temperature gradient

δ angle of section relative to north

δij Kronecker delta

∆t time step

∆B buoyancy change from initial conditions

∆BS, ∆BT buoyancy change due to salinity, temperature

ε dissipation rate of k

η light attennuation coefficient

Λ Ivlev constant for zooplankton grazing

µ, µV , µR general, molecular and turbulent eddy viscosity

νb background vertical eddy viscosity

ν0 vertical eddy viscosity for unstable conditions

νref reference molecular viscosity

ρ density

ρc maximum density at p = S = 0

ρ0 general density at p = 0

σ, τ salinity difference and preconditioning time for Baikal studies

τ̂ [τ̂ V ] (τij) viscous shear stress tensor [averaged] (component of)

τ̂
R (τR

ij ) Reynolds stress tensor (component of)

υ percentage change in riverine plankton model component

φ latitude of section

ϕ riverine tracer

Φ general scalar variable
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Φ vector of node values of Φ

Ω Earth’s angular velocity vector

Ωx, Ωy, Ωz components of Earth’s angular velocity vector

subscripts:

e, w, n, s value at cell face

E, W, N, S value at neighbouring node

f value at general cell face

i, j general indexed value

in initial lake value

L lake value

nb value at general neighbouring node

R river value (boundary condition)

U, C, D value at upstream, central, and downstream nodes

X value at node of interest

superscripts:

n, n + 1 time step of value

∗ guessed value

′ correction value / fluctuation from mean

mean value
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Boussinesq, J. (1903), Théorie Analytique de la chaleur, Vol. 2, Gauthier-Villars, Paris.

Brooks, I. & Lick, W. (1972), ‘Lake currents associated with the thermal bar’, J. Geo-

phys. Res. 77(30), 6000–6013.

Budd, J., Kerfoot, W. C., Pilant, A. & Jipping, L. M. (1999), ‘The Kweenaw Current

and ice rafting: use of satellite imagery to investigate copper-rich particle dispersal’,

J. Great Lakes Res. 25(4), 642–662.

Callender, E. & Granina, L. (1997), ‘Geochemical mass balance of major elements in

Lake Baikal’, Limnol. Oceanogr. 42, 148–155.

Carmack, E. C. (1979), ‘Combined influence of inflow and lake temperatures on spring

circulation in a riverine lake’, J. Phys. Oceanogr. 9, 422–434.

214



Carmack, E. C. & Gray, C. B. J. (1982), ‘Patterns of circulation and nutrient supply in

a medium residence-time reservior: Kootenay Lake, British Columbia’, Can. Water

Resour. 7, 51–70.

Carmack, E. C. & Weiss, R. F. (1991), Convection in Lake Baikal: an example of

thermobaric instability, in P. C. Chu & J. C. Garcard, eds, ‘Deep Convection and

Deep Water Formation in the Oceans’, Elsevier Oceanography Series, 57, pp. 215–

228.

Carmack, E. C., Gray, C. B. J., Pharo, C. H. & Daley, R. J. (1979), ‘Importance of

lake-river interaction on seasonal patterns in the general circulation of Kamloops

Lake, British Columbia’, Limnol. Oceanogr. 24(4), 634–644.

Carmack, E. C., Wiegand, R. C., Daley, R. J., Gray, C. B. J., Jasper, S. & Pharo, C. H.

(1986), ‘Mechanisms influencing the circulation and distribution of water mass in

a medium residence time lake’, Limnol. Oceanogr. 31(2), 249–265.

Chen, C. T. A. & Millero, F. J. (1977), ‘Effect of salt content on the temperature

of maximum density and on static stability in Lake Ontario’, Limnol. Oceanogr.

22(1), 158–159.

Chen, C. T. A. & Millero, F. J. (1986), ‘Precise thermodynamic properties for natural

waters covering only the limnological range’, Limnol. Oceanogr. 31(3), 657–662.

Cheng, R. T., Powell, T. M. & Dillon, T. M. (1976), ‘Numerical models of wind driven

circulation in lakes’, Appl. Math. Modell. 1, 141–159.

Csanady, G. T. (1971), ‘On the equilibrium shape of the thermocline in the shore zone’,

J. Phys. Oceanogr. 1(2), 263–270.

Dokulil, M. T. (1994), ‘Environmental control of phytoplankton productivity in turbu-

lent turbid systems’, Hydrobiologia 289, 65–72.

Edlund, M. B., Stoermer, E. F. & Pilskaln, C. H. (1995), ‘Siliceous microfossil succes-

sion in the recent history of two basins in Lake Baikal, Siberia’, J. Paleolimnology

14(2), 165–184.

Edwards, A. M. (2001), ‘Adding detritus to a nutrient-phytoplankton-zooplankton

model: a dynamical-systems approach’, J. Plankton Res. 23(4), 389–413.

215



Eklund, H. (1963), ‘Fresh water: temperature of maximum density calculated from

compressibility’, Science 142, 1457–1458.

Elliott, G. H. (1970), A laboratory and mathematical study of the ‘thermal bar’, PhD

thesis, Inst. of Oceanogr., Univ. of British Columbia, Vancouver, B.C., Canada.

Elliott, G. H. (1971), A mathematical study of the thermal bar, in ‘Proc. 14th Conf.

Great Lakes Res.’, Int. Assoc. Great Lakes Res., pp. 545–554.

Elliott, G. H. & Elliott, J. A. (1969), Small-scale model of the ‘thermal bar’, in ‘Proc.

12th Conf. Great Lakes Res.’, Int. Assoc. Great Lakes Res., pp. 553–557.

Elliott, G. H. & Elliott, J. A. (1970), Laboratory studies on the thermal bar, in ‘Proc.

13th Conf. Great Lakes Res.’, Int. Assoc. Great Lakes Res., pp. 413–418.

Falkner, K. K., Church, M., Measures, C. I., LeBaron, G., Thouron, D., Jeandel, C.,

Stourdal, M. C., Gill, G. A., Mortlock, R., Froelich, P. & Chan, L.-H. (1997), ‘Major

and trace element chemistry of Lake Baikal, it’s tributaries, and surrounding hot

springs’, Limnol. Oceanogr. 42(2), 329–345.

Falkner, K. K., Measures, C. I., Herbelin, S. E., Edmond, J. M. & Weiss, R. F. (1991),

‘The major and minor element geochemistry of Lake Baikal’, Limnol. Oceanogr.

36(3), 413–423.

Farmer, D. M. & Carmack, E. C. (1981), ‘Wind mixing and restratification in a lake

near the temperature of maximum density’, J. Phys. Oceanogr. 11, 1516–1533.

Farrow, D. E. (1995a), ‘An asymptotic model for the hydrodynamics of the thermal

bar’, J. Fluid Mech. 289, 129–140.

Farrow, D. E. (1995b), ‘A numerical model of the hydrodynamics of the thermal bar’,

J. Fluid Mech. 303, 279–295.

Fasham, M. J. R., Ducklow, H. W. & McKelvie, S. M. (1990), ‘A nitrogen-based model

of plankton dynamics in the oceanic mixed layer’, J. Mar. Res. 48, 591–639.
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